Properties

Label 4-4312-1.1-c1e2-0-0
Degree $4$
Conductor $4312$
Sign $1$
Analytic cond. $0.274936$
Root an. cond. $0.724116$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 3·8-s + 2·9-s + 3·11-s − 16-s − 2·18-s − 3·22-s + 8·23-s − 6·25-s − 12·29-s − 5·32-s − 2·36-s + 4·37-s − 3·44-s − 8·46-s − 7·49-s + 6·50-s − 12·53-s + 12·58-s + 7·64-s − 8·67-s + 6·72-s − 4·74-s + 16·79-s − 5·81-s + 9·88-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 1.06·8-s + 2/3·9-s + 0.904·11-s − 1/4·16-s − 0.471·18-s − 0.639·22-s + 1.66·23-s − 6/5·25-s − 2.22·29-s − 0.883·32-s − 1/3·36-s + 0.657·37-s − 0.452·44-s − 1.17·46-s − 49-s + 0.848·50-s − 1.64·53-s + 1.57·58-s + 7/8·64-s − 0.977·67-s + 0.707·72-s − 0.464·74-s + 1.80·79-s − 5/9·81-s + 0.959·88-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4312 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4312 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(4312\)    =    \(2^{3} \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(0.274936\)
Root analytic conductor: \(0.724116\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 4312,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5519183913\)
\(L(\frac12)\) \(\approx\) \(0.5519183913\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + p T^{2} \)
7$C_2$ \( 1 + p T^{2} \)
11$C_1$$\times$$C_2$ \( ( 1 + T )( 1 - 4 T + p T^{2} ) \)
good3$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 66 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 98 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
89$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.57313208072039565242489501283, −11.63316742955686156406170012524, −11.16672268822472124045955896956, −10.62530427950729378876476435816, −9.765679143838034283560120231075, −9.383910769388270541310975434624, −9.060882887232174526671976429397, −8.125068841280254498307837446517, −7.56224037698736452894490709631, −6.97747003095705240814495677956, −6.07772411408113041386088890828, −5.12124979070812192521635742220, −4.31769654779329217122275139856, −3.51333942727764849161163416179, −1.62756022206303990072823312538, 1.62756022206303990072823312538, 3.51333942727764849161163416179, 4.31769654779329217122275139856, 5.12124979070812192521635742220, 6.07772411408113041386088890828, 6.97747003095705240814495677956, 7.56224037698736452894490709631, 8.125068841280254498307837446517, 9.060882887232174526671976429397, 9.383910769388270541310975434624, 9.765679143838034283560120231075, 10.62530427950729378876476435816, 11.16672268822472124045955896956, 11.63316742955686156406170012524, 12.57313208072039565242489501283

Graph of the $Z$-function along the critical line