Properties

Label 4-308700-1.1-c1e2-0-11
Degree $4$
Conductor $308700$
Sign $1$
Analytic cond. $19.6829$
Root an. cond. $2.10631$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3·4-s + 7-s + 4·8-s + 9-s + 2·14-s + 5·16-s + 2·18-s + 25-s + 3·28-s − 12·29-s + 6·32-s + 3·36-s + 4·37-s + 16·43-s + 49-s + 2·50-s + 12·53-s + 4·56-s − 24·58-s + 63-s + 7·64-s + 16·67-s + 4·72-s + 8·74-s − 32·79-s + 81-s + ⋯
L(s)  = 1  + 1.41·2-s + 3/2·4-s + 0.377·7-s + 1.41·8-s + 1/3·9-s + 0.534·14-s + 5/4·16-s + 0.471·18-s + 1/5·25-s + 0.566·28-s − 2.22·29-s + 1.06·32-s + 1/2·36-s + 0.657·37-s + 2.43·43-s + 1/7·49-s + 0.282·50-s + 1.64·53-s + 0.534·56-s − 3.15·58-s + 0.125·63-s + 7/8·64-s + 1.95·67-s + 0.471·72-s + 0.929·74-s − 3.60·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 308700 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 308700 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(308700\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7^{3}\)
Sign: $1$
Analytic conductor: \(19.6829\)
Root analytic conductor: \(2.10631\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 308700,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.947123017\)
\(L(\frac12)\) \(\approx\) \(4.947123017\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{2} \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
7$C_1$ \( 1 - T \)
good11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
79$C_2$ \( ( 1 + 16 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.731498057007750352966650002167, −8.319627980737908137853866947983, −7.51387576011083292544985077305, −7.27965583167809929942184453108, −7.10964669364204788106378776803, −6.14620005069006563789988203374, −5.78759423294267265835869539718, −5.60234946102839433104390934262, −4.64849576847169223614699526425, −4.57559453297699244994264276723, −3.71822253537069739639390686069, −3.54557244775390244119212987579, −2.47224864249386374740461957491, −2.16105217917237072156284139202, −1.12161915937701051533126457273, 1.12161915937701051533126457273, 2.16105217917237072156284139202, 2.47224864249386374740461957491, 3.54557244775390244119212987579, 3.71822253537069739639390686069, 4.57559453297699244994264276723, 4.64849576847169223614699526425, 5.60234946102839433104390934262, 5.78759423294267265835869539718, 6.14620005069006563789988203374, 7.10964669364204788106378776803, 7.27965583167809929942184453108, 7.51387576011083292544985077305, 8.319627980737908137853866947983, 8.731498057007750352966650002167

Graph of the $Z$-function along the critical line