Properties

Label 4-168e2-1.1-c1e2-0-9
Degree $4$
Conductor $28224$
Sign $1$
Analytic cond. $1.79958$
Root an. cond. $1.15822$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9-s + 8·11-s − 16·23-s − 6·25-s + 12·29-s + 12·37-s + 8·43-s − 7·49-s − 4·53-s − 8·67-s + 16·71-s − 16·79-s + 81-s + 8·99-s − 24·107-s − 4·109-s + 36·113-s + 26·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  + 1/3·9-s + 2.41·11-s − 3.33·23-s − 6/5·25-s + 2.22·29-s + 1.97·37-s + 1.21·43-s − 49-s − 0.549·53-s − 0.977·67-s + 1.89·71-s − 1.80·79-s + 1/9·81-s + 0.804·99-s − 2.32·107-s − 0.383·109-s + 3.38·113-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 28224 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28224 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(28224\)    =    \(2^{6} \cdot 3^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1.79958\)
Root analytic conductor: \(1.15822\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 28224,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.374032019\)
\(L(\frac12)\) \(\approx\) \(1.374032019\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
7$C_2$ \( 1 + p T^{2} \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.38821044474727584259194616775, −9.964671915727173343349228861429, −9.541792988687802337799065273854, −9.172969029955001041869475015652, −8.228097915824748265448934137029, −8.098990694093691505068092710868, −7.33253412720106144652855023371, −6.42897107072744719896577758454, −6.30552876175851347232907272447, −5.77649722095232052155724795965, −4.41794336687255381402125784080, −4.25303028692796488061253338187, −3.60246495583988551500687864369, −2.34965244557392920909834502109, −1.35556028534757571668534423075, 1.35556028534757571668534423075, 2.34965244557392920909834502109, 3.60246495583988551500687864369, 4.25303028692796488061253338187, 4.41794336687255381402125784080, 5.77649722095232052155724795965, 6.30552876175851347232907272447, 6.42897107072744719896577758454, 7.33253412720106144652855023371, 8.098990694093691505068092710868, 8.228097915824748265448934137029, 9.172969029955001041869475015652, 9.541792988687802337799065273854, 9.964671915727173343349228861429, 10.38821044474727584259194616775

Graph of the $Z$-function along the critical line