Properties

Label 4-260876-1.1-c1e2-0-4
Degree $4$
Conductor $260876$
Sign $-1$
Analytic cond. $16.6336$
Root an. cond. $2.01951$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·4-s − 7-s − 4·8-s + 9-s + 11-s + 2·14-s + 5·16-s − 2·18-s − 2·22-s − 9·23-s − 4·25-s − 3·28-s + 6·29-s − 6·32-s + 3·36-s − 5·37-s + 7·43-s + 3·44-s + 18·46-s − 6·49-s + 8·50-s + 6·53-s + 4·56-s − 12·58-s − 63-s + 7·64-s + ⋯
L(s)  = 1  − 1.41·2-s + 3/2·4-s − 0.377·7-s − 1.41·8-s + 1/3·9-s + 0.301·11-s + 0.534·14-s + 5/4·16-s − 0.471·18-s − 0.426·22-s − 1.87·23-s − 4/5·25-s − 0.566·28-s + 1.11·29-s − 1.06·32-s + 1/2·36-s − 0.821·37-s + 1.06·43-s + 0.452·44-s + 2.65·46-s − 6/7·49-s + 1.13·50-s + 0.824·53-s + 0.534·56-s − 1.57·58-s − 0.125·63-s + 7/8·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 260876 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 260876 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(260876\)    =    \(2^{2} \cdot 7^{2} \cdot 11^{3}\)
Sign: $-1$
Analytic conductor: \(16.6336\)
Root analytic conductor: \(2.01951\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 260876,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
7$C_2$ \( 1 + T + p T^{2} \)
11$C_1$ \( 1 - T \)
good3$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 19 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2^2$ \( 1 - 20 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 + 3 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + T + p T^{2} ) \)
47$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 23 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 67 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2^2$ \( 1 - 20 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 110 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 17 T + p T^{2} )( 1 + 17 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.507897524075165785759917404928, −8.445534035290414055305010958501, −7.77469473704195364077621229491, −7.44672813365688738975842756286, −6.87681975385504124914718793711, −6.45592963182456326471421682466, −5.95263483747271245182502541366, −5.56638299187402291856591788143, −4.64180248246595770637838520702, −4.03083308612443923525672623490, −3.46733874547757557355626504081, −2.64322027621761890600480234130, −2.02109411661187122780364708336, −1.23566699110471542844307728143, 0, 1.23566699110471542844307728143, 2.02109411661187122780364708336, 2.64322027621761890600480234130, 3.46733874547757557355626504081, 4.03083308612443923525672623490, 4.64180248246595770637838520702, 5.56638299187402291856591788143, 5.95263483747271245182502541366, 6.45592963182456326471421682466, 6.87681975385504124914718793711, 7.44672813365688738975842756286, 7.77469473704195364077621229491, 8.445534035290414055305010958501, 8.507897524075165785759917404928

Graph of the $Z$-function along the critical line