Properties

Label 4-490e2-1.1-c1e2-0-11
Degree $4$
Conductor $240100$
Sign $1$
Analytic cond. $15.3089$
Root an. cond. $1.97804$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3·4-s + 4·8-s + 3·9-s − 4·11-s + 5·16-s + 6·18-s − 8·22-s + 6·23-s + 25-s + 18·29-s + 6·32-s + 9·36-s − 8·37-s − 10·43-s − 12·44-s + 12·46-s + 2·50-s − 4·53-s + 36·58-s + 7·64-s − 18·67-s + 4·71-s + 12·72-s − 16·74-s + 20·79-s − 20·86-s + ⋯
L(s)  = 1  + 1.41·2-s + 3/2·4-s + 1.41·8-s + 9-s − 1.20·11-s + 5/4·16-s + 1.41·18-s − 1.70·22-s + 1.25·23-s + 1/5·25-s + 3.34·29-s + 1.06·32-s + 3/2·36-s − 1.31·37-s − 1.52·43-s − 1.80·44-s + 1.76·46-s + 0.282·50-s − 0.549·53-s + 4.72·58-s + 7/8·64-s − 2.19·67-s + 0.474·71-s + 1.41·72-s − 1.85·74-s + 2.25·79-s − 2.15·86-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 240100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 240100 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(240100\)    =    \(2^{2} \cdot 5^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(15.3089\)
Root analytic conductor: \(1.97804\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 240100,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.628048522\)
\(L(\frac12)\) \(\approx\) \(4.628048522\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{2} \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
7 \( 1 \)
good3$C_2$ \( ( 1 - p T + p T^{2} )( 1 + p T + p T^{2} ) \)
11$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
61$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
67$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
89$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.801329180936076378169644135886, −8.417995701997192590477084041039, −7.916325009885536263558334349206, −7.36597660738767186076247894677, −6.89394037901040901071472214534, −6.57205733073059424709937866086, −6.09157415694094013326272320913, −5.26789391708575690709750011159, −4.88294429143581850116350412354, −4.72473630829615747045956251199, −4.00544203434240366935428278549, −3.08854077694740486482752774267, −3.00212844655097191031458367831, −2.07618093352752431919693916301, −1.16479363083596500346798967246, 1.16479363083596500346798967246, 2.07618093352752431919693916301, 3.00212844655097191031458367831, 3.08854077694740486482752774267, 4.00544203434240366935428278549, 4.72473630829615747045956251199, 4.88294429143581850116350412354, 5.26789391708575690709750011159, 6.09157415694094013326272320913, 6.57205733073059424709937866086, 6.89394037901040901071472214534, 7.36597660738767186076247894677, 7.916325009885536263558334349206, 8.417995701997192590477084041039, 8.801329180936076378169644135886

Graph of the $Z$-function along the critical line