Properties

Label 4-231868-1.1-c1e2-0-2
Degree $4$
Conductor $231868$
Sign $1$
Analytic cond. $14.7841$
Root an. cond. $1.96086$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3·4-s − 7-s + 4·8-s − 6·9-s + 8·11-s − 2·14-s + 5·16-s − 12·18-s + 16·22-s + 16·23-s − 6·25-s − 3·28-s − 20·29-s + 6·32-s − 18·36-s + 12·37-s + 8·43-s + 24·44-s + 32·46-s + 49-s − 12·50-s + 12·53-s − 4·56-s − 40·58-s + 6·63-s + 7·64-s + ⋯
L(s)  = 1  + 1.41·2-s + 3/2·4-s − 0.377·7-s + 1.41·8-s − 2·9-s + 2.41·11-s − 0.534·14-s + 5/4·16-s − 2.82·18-s + 3.41·22-s + 3.33·23-s − 6/5·25-s − 0.566·28-s − 3.71·29-s + 1.06·32-s − 3·36-s + 1.97·37-s + 1.21·43-s + 3.61·44-s + 4.71·46-s + 1/7·49-s − 1.69·50-s + 1.64·53-s − 0.534·56-s − 5.25·58-s + 0.755·63-s + 7/8·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 231868 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 231868 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(231868\)    =    \(2^{2} \cdot 7^{3} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(14.7841\)
Root analytic conductor: \(1.96086\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 231868,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.159308180\)
\(L(\frac12)\) \(\approx\) \(4.159308180\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{2} \)
7$C_1$ \( 1 + T \)
13$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good3$C_2$ \( ( 1 + p T^{2} )^{2} \)
5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.866721919717987183503254472214, −8.859993684429509937089550201483, −7.85978674489636737433292665467, −7.27140118507887344137703587645, −7.08827055361374002488782088399, −6.19217622188912966190136871625, −6.15808758860020713697644216306, −5.54202809749496778607378449269, −5.21535057877927416914375242112, −4.37213247577605881410699996850, −3.67764363944170895713490289621, −3.61340273083380727429539514001, −2.80007795096300664935178443373, −2.18713180950649411226712364496, −1.07575714032888939674416120242, 1.07575714032888939674416120242, 2.18713180950649411226712364496, 2.80007795096300664935178443373, 3.61340273083380727429539514001, 3.67764363944170895713490289621, 4.37213247577605881410699996850, 5.21535057877927416914375242112, 5.54202809749496778607378449269, 6.15808758860020713697644216306, 6.19217622188912966190136871625, 7.08827055361374002488782088399, 7.27140118507887344137703587645, 7.85978674489636737433292665467, 8.859993684429509937089550201483, 8.866721919717987183503254472214

Graph of the $Z$-function along the critical line