Properties

Label 4-28e3-1.1-c1e2-0-0
Degree $4$
Conductor $21952$
Sign $1$
Analytic cond. $1.39967$
Root an. cond. $1.08769$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s − 2·9-s + 16·23-s + 6·25-s + 4·29-s − 12·37-s + 16·43-s + 49-s − 20·53-s − 2·63-s − 24·67-s − 16·79-s − 5·81-s − 24·107-s + 20·109-s + 12·113-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 16·161-s + 163-s + 167-s + ⋯
L(s)  = 1  + 0.377·7-s − 2/3·9-s + 3.33·23-s + 6/5·25-s + 0.742·29-s − 1.97·37-s + 2.43·43-s + 1/7·49-s − 2.74·53-s − 0.251·63-s − 2.93·67-s − 1.80·79-s − 5/9·81-s − 2.32·107-s + 1.91·109-s + 1.12·113-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 1.26·161-s + 0.0783·163-s + 0.0773·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21952 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21952 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(21952\)    =    \(2^{6} \cdot 7^{3}\)
Sign: $1$
Analytic conductor: \(1.39967\)
Root analytic conductor: \(1.08769\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 21952,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.208681114\)
\(L(\frac12)\) \(\approx\) \(1.208681114\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_1$ \( 1 - T \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
53$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.85093898417625194511634818884, −10.55520673636509499483521968270, −9.590662754018899629342276160434, −8.928329697232844766585907221767, −8.870187268949863787955145092048, −8.188057214509100026281306554311, −7.22672629765934394974316502798, −7.14438434722230698367292292955, −6.27767574855681654030919817110, −5.57466416223045488855827312533, −4.90170998996837834018405216678, −4.50185552371175935345657331179, −3.14137792992390816749783057891, −2.87703403465824901690577931359, −1.30690906969982341922250798482, 1.30690906969982341922250798482, 2.87703403465824901690577931359, 3.14137792992390816749783057891, 4.50185552371175935345657331179, 4.90170998996837834018405216678, 5.57466416223045488855827312533, 6.27767574855681654030919817110, 7.14438434722230698367292292955, 7.22672629765934394974316502798, 8.188057214509100026281306554311, 8.870187268949863787955145092048, 8.928329697232844766585907221767, 9.590662754018899629342276160434, 10.55520673636509499483521968270, 10.85093898417625194511634818884

Graph of the $Z$-function along the critical line