Properties

Label 4-462e2-1.1-c1e2-0-3
Degree $4$
Conductor $213444$
Sign $1$
Analytic cond. $13.6093$
Root an. cond. $1.92070$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·4-s + 2·7-s − 4·8-s + 9-s − 2·11-s − 4·14-s + 5·16-s − 2·18-s + 4·22-s + 12·23-s − 10·25-s + 6·28-s + 12·29-s − 6·32-s + 3·36-s − 20·37-s + 16·43-s − 6·44-s − 24·46-s − 3·49-s + 20·50-s − 8·56-s − 24·58-s + 2·63-s + 7·64-s − 8·67-s + ⋯
L(s)  = 1  − 1.41·2-s + 3/2·4-s + 0.755·7-s − 1.41·8-s + 1/3·9-s − 0.603·11-s − 1.06·14-s + 5/4·16-s − 0.471·18-s + 0.852·22-s + 2.50·23-s − 2·25-s + 1.13·28-s + 2.22·29-s − 1.06·32-s + 1/2·36-s − 3.28·37-s + 2.43·43-s − 0.904·44-s − 3.53·46-s − 3/7·49-s + 2.82·50-s − 1.06·56-s − 3.15·58-s + 0.251·63-s + 7/8·64-s − 0.977·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 213444 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 213444 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(213444\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(13.6093\)
Root analytic conductor: \(1.92070\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 213444,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9420904916\)
\(L(\frac12)\) \(\approx\) \(0.9420904916\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
7$C_2$ \( 1 - 2 T + p T^{2} \)
11$C_1$ \( ( 1 + T )^{2} \)
good5$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
53$C_2$ \( ( 1 + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.958855021658912251315559727512, −8.731622022691464682737122465780, −8.013104010237496671597514230187, −7.82645545698547241323210264911, −7.31156938226239113875453585273, −6.77506565559004391547494912024, −6.46285019703242959678902869410, −5.62122186770240684074690473279, −5.14110181688607884712664879052, −4.69333471332706230755932945396, −3.77174402308413079522587358569, −3.08375157042371119503272456681, −2.37545091357255938865951638025, −1.67169823291829433403188663441, −0.792903116476162912230355051834, 0.792903116476162912230355051834, 1.67169823291829433403188663441, 2.37545091357255938865951638025, 3.08375157042371119503272456681, 3.77174402308413079522587358569, 4.69333471332706230755932945396, 5.14110181688607884712664879052, 5.62122186770240684074690473279, 6.46285019703242959678902869410, 6.77506565559004391547494912024, 7.31156938226239113875453585273, 7.82645545698547241323210264911, 8.013104010237496671597514230187, 8.731622022691464682737122465780, 8.958855021658912251315559727512

Graph of the $Z$-function along the critical line