Properties

Label 4-112e3-1.1-c1e2-0-31
Degree $4$
Conductor $1404928$
Sign $-1$
Analytic cond. $89.5794$
Root an. cond. $3.07646$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s − 2·9-s + 4·11-s − 12·23-s − 2·25-s + 2·29-s + 10·37-s + 4·43-s + 49-s + 10·53-s − 2·63-s − 4·67-s − 20·71-s + 4·77-s − 20·79-s − 5·81-s − 8·99-s + 4·107-s − 14·109-s + 4·113-s + 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + ⋯
L(s)  = 1  + 0.377·7-s − 2/3·9-s + 1.20·11-s − 2.50·23-s − 2/5·25-s + 0.371·29-s + 1.64·37-s + 0.609·43-s + 1/7·49-s + 1.37·53-s − 0.251·63-s − 0.488·67-s − 2.37·71-s + 0.455·77-s − 2.25·79-s − 5/9·81-s − 0.804·99-s + 0.386·107-s − 1.34·109-s + 0.376·113-s + 6/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1404928 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1404928 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1404928\)    =    \(2^{12} \cdot 7^{3}\)
Sign: $-1$
Analytic conductor: \(89.5794\)
Root analytic conductor: \(3.07646\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1404928,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_1$ \( 1 - T \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
5$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2^2$ \( 1 + 22 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + p T^{2} ) \)
41$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 - 62 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 98 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 + 8 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 + 8 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
97$C_2^2$ \( 1 - 106 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.65869261167450107823750782855, −7.45005912928402327913214471059, −6.85998409614637159802942519472, −6.21371174791133844116511861976, −6.00587253425096093343995602071, −5.76175796207076806488885877771, −5.08361012405941074736360249977, −4.39104688838354248863570972870, −4.07730036325899161420861564778, −3.82779271563122276431113592288, −2.90735366089804934483169027144, −2.51081508633609164424142946426, −1.78034092513983073922801136583, −1.16374911236534542788260164388, 0, 1.16374911236534542788260164388, 1.78034092513983073922801136583, 2.51081508633609164424142946426, 2.90735366089804934483169027144, 3.82779271563122276431113592288, 4.07730036325899161420861564778, 4.39104688838354248863570972870, 5.08361012405941074736360249977, 5.76175796207076806488885877771, 6.00587253425096093343995602071, 6.21371174791133844116511861976, 6.85998409614637159802942519472, 7.45005912928402327913214471059, 7.65869261167450107823750782855

Graph of the $Z$-function along the critical line