Properties

Label 4-112e3-1.1-c1e2-0-10
Degree $4$
Conductor $1404928$
Sign $1$
Analytic cond. $89.5794$
Root an. cond. $3.07646$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s + 2·9-s + 4·11-s − 4·23-s + 6·25-s + 16·29-s + 8·37-s − 12·43-s + 49-s + 4·53-s − 2·63-s − 4·77-s − 5·81-s + 8·99-s + 32·107-s + 16·109-s + 4·113-s − 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 4·161-s + 163-s + ⋯
L(s)  = 1  − 0.377·7-s + 2/3·9-s + 1.20·11-s − 0.834·23-s + 6/5·25-s + 2.97·29-s + 1.31·37-s − 1.82·43-s + 1/7·49-s + 0.549·53-s − 0.251·63-s − 0.455·77-s − 5/9·81-s + 0.804·99-s + 3.09·107-s + 1.53·109-s + 0.376·113-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.315·161-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1404928 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1404928 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1404928\)    =    \(2^{12} \cdot 7^{3}\)
Sign: $1$
Analytic conductor: \(89.5794\)
Root analytic conductor: \(3.07646\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1404928,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.624694380\)
\(L(\frac12)\) \(\approx\) \(2.624694380\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_1$ \( 1 + T \)
good3$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \)
13$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 78 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2^2$ \( 1 - 114 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 110 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 170 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.981002465287654668988933863340, −7.43635268350522428140455897505, −6.97915942238421982253637997626, −6.61967745828519291955966582786, −6.26067575339864908957497264002, −6.03135836515757202452332857196, −5.13222420117273541685523981426, −4.78269108971400332506103231936, −4.34792561606491544760807031110, −3.92131563655870509018437281297, −3.26710188844205178276713005924, −2.85210215314512583991080317117, −2.14042726163213666452034192622, −1.33897933100049600903278958832, −0.791583873298510527513297561634, 0.791583873298510527513297561634, 1.33897933100049600903278958832, 2.14042726163213666452034192622, 2.85210215314512583991080317117, 3.26710188844205178276713005924, 3.92131563655870509018437281297, 4.34792561606491544760807031110, 4.78269108971400332506103231936, 5.13222420117273541685523981426, 6.03135836515757202452332857196, 6.26067575339864908957497264002, 6.61967745828519291955966582786, 6.97915942238421982253637997626, 7.43635268350522428140455897505, 7.981002465287654668988933863340

Graph of the $Z$-function along the critical line