Properties

Label 4-112e3-1.1-c1e2-0-7
Degree $4$
Conductor $1404928$
Sign $1$
Analytic cond. $89.5794$
Root an. cond. $3.07646$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s + 6·11-s − 2·23-s − 6·25-s + 4·29-s + 8·37-s + 14·43-s + 49-s + 6·53-s + 8·67-s + 16·71-s − 6·77-s + 12·79-s − 9·81-s + 4·107-s + 4·109-s − 8·113-s + 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 2·161-s + 163-s + ⋯
L(s)  = 1  − 0.377·7-s + 1.80·11-s − 0.417·23-s − 6/5·25-s + 0.742·29-s + 1.31·37-s + 2.13·43-s + 1/7·49-s + 0.824·53-s + 0.977·67-s + 1.89·71-s − 0.683·77-s + 1.35·79-s − 81-s + 0.386·107-s + 0.383·109-s − 0.752·113-s + 6/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.157·161-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1404928 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1404928 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1404928\)    =    \(2^{12} \cdot 7^{3}\)
Sign: $1$
Analytic conductor: \(89.5794\)
Root analytic conductor: \(3.07646\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1404928,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.362058470\)
\(L(\frac12)\) \(\approx\) \(2.362058470\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_1$ \( 1 + T \)
good3$C_2^2$ \( 1 + p^{2} T^{4} \)
5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
13$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 24 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 96 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 66 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + p T^{2} ) \)
83$C_2^2$ \( 1 - 72 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 70 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 58 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.973154762079545303604438435230, −7.53501780426551273067960397429, −6.96896607652998296250929779979, −6.63945337322056470396257157759, −6.19922578082538972545274879674, −5.90477584666526868227975885217, −5.40533381932107717723736343107, −4.72351915570667030998933327870, −4.19721540899933601187892140421, −3.84837293664482043821669858618, −3.54867190725794325861079800664, −2.60179529300555599455104946686, −2.26861390332467851560893936650, −1.36299850813920827589267426179, −0.72965766052278370661407714693, 0.72965766052278370661407714693, 1.36299850813920827589267426179, 2.26861390332467851560893936650, 2.60179529300555599455104946686, 3.54867190725794325861079800664, 3.84837293664482043821669858618, 4.19721540899933601187892140421, 4.72351915570667030998933327870, 5.40533381932107717723736343107, 5.90477584666526868227975885217, 6.19922578082538972545274879674, 6.63945337322056470396257157759, 6.96896607652998296250929779979, 7.53501780426551273067960397429, 7.973154762079545303604438435230

Graph of the $Z$-function along the critical line