Properties

Degree 4
Conductor $ 2^{2} \cdot 3^{4} \cdot 7^{3} $
Sign $1$
Motivic weight 1
Primitive no
Self-dual yes
Analytic rank 0

Origins

Origins of factors

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3·4-s + 7-s + 4·8-s + 2·14-s + 5·16-s − 10·25-s + 3·28-s + 12·29-s + 6·32-s + 4·37-s + 16·43-s + 49-s − 20·50-s − 12·53-s + 4·56-s + 24·58-s + 7·64-s − 8·67-s + 8·74-s + 16·79-s + 32·86-s + 2·98-s − 30·100-s − 24·106-s − 24·107-s + 4·109-s + ⋯
L(s)  = 1  + 1.41·2-s + 3/2·4-s + 0.377·7-s + 1.41·8-s + 0.534·14-s + 5/4·16-s − 2·25-s + 0.566·28-s + 2.22·29-s + 1.06·32-s + 0.657·37-s + 2.43·43-s + 1/7·49-s − 2.82·50-s − 1.64·53-s + 0.534·56-s + 3.15·58-s + 7/8·64-s − 0.977·67-s + 0.929·74-s + 1.80·79-s + 3.45·86-s + 0.202·98-s − 3·100-s − 2.33·106-s − 2.32·107-s + 0.383·109-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 111132 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 111132 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(4\)
\( N \)  =  \(111132\)    =    \(2^{2} \cdot 3^{4} \cdot 7^{3}\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{111132} (1, \cdot )$
Sato-Tate  :  $\mathrm{SU}(2)$
primitive  :  no
self-dual  :  yes
analytic rank  =  0
Selberg data  =  $(4,\ 111132,\ (\ :1/2, 1/2),\ 1)$
$L(1)$  $\approx$  $3.970518913$
$L(\frac12)$  $\approx$  $3.970518913$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{2,\;3,\;7\}$, \[F_p(T) = 1 - a_p T + b_p T^2 - a_p p T^3 + p^2 T^4 \]with $b_p = a_p^2 - a_{p^2}$. If $p \in \{2,\;3,\;7\}$, then $F_p$ is a polynomial of degree at most 3.
$p$$\Gal(F_p)$$F_p$
bad2$C_1$ \( ( 1 - T )^{2} \)
3 \( 1 \)
7$C_1$ \( 1 - T \)
good5$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−9.393998538973797562285424645673, −9.207333736191082013174831123730, −8.245010328271296459357780366393, −7.80365099617056766338064266882, −7.64010214491199898083268392854, −6.71310127772875365703449938682, −6.37349457460642388728354325328, −5.88407913223931048395780461484, −5.31921059379060528260176389250, −4.74683922157615295493069282209, −4.19102102405251164216473944262, −3.79391663707115759548696099652, −2.83833445427180997893704571146, −2.39101862347891857041372548490, −1.33827299261372059142982522511, 1.33827299261372059142982522511, 2.39101862347891857041372548490, 2.83833445427180997893704571146, 3.79391663707115759548696099652, 4.19102102405251164216473944262, 4.74683922157615295493069282209, 5.31921059379060528260176389250, 5.88407913223931048395780461484, 6.37349457460642388728354325328, 6.71310127772875365703449938682, 7.64010214491199898083268392854, 7.80365099617056766338064266882, 8.245010328271296459357780366393, 9.207333736191082013174831123730, 9.393998538973797562285424645673

Graph of the $Z$-function along the critical line