Properties

Label 4-627200-1.1-c1e2-0-30
Degree $4$
Conductor $627200$
Sign $-1$
Analytic cond. $39.9908$
Root an. cond. $2.51472$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s + 9-s + 2·11-s − 14·23-s − 25-s + 4·29-s + 2·37-s − 18·43-s − 3·49-s − 8·53-s + 2·63-s − 8·67-s − 8·71-s + 4·77-s + 8·79-s − 8·81-s + 2·99-s − 24·109-s + 6·113-s − 3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + ⋯
L(s)  = 1  + 0.755·7-s + 1/3·9-s + 0.603·11-s − 2.91·23-s − 1/5·25-s + 0.742·29-s + 0.328·37-s − 2.74·43-s − 3/7·49-s − 1.09·53-s + 0.251·63-s − 0.977·67-s − 0.949·71-s + 0.455·77-s + 0.900·79-s − 8/9·81-s + 0.201·99-s − 2.29·109-s + 0.564·113-s − 0.272·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 627200 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627200 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(627200\)    =    \(2^{9} \cdot 5^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(39.9908\)
Root analytic conductor: \(2.51472\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 627200,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( 1 + T^{2} \)
7$C_2$ \( 1 - 2 T + p T^{2} \)
good3$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
11$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
17$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 - T + p T^{2} ) \)
31$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 + 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 25 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2^2$ \( 1 + 70 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
97$C_2^2$ \( 1 + 11 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.201778117150140316635562063044, −7.86659196667261300109853799091, −7.32853404588086774982287709642, −6.70735828007316598449300123417, −6.37415500568501680402401167349, −5.94559455308120471165221523841, −5.40415150692962336038562713909, −4.73237059604909078169206468802, −4.46074750043514274375767878733, −3.86586642897977445123682498219, −3.39904537413216697526890502620, −2.58707418621103566308278941245, −1.77181195899956042692549423902, −1.48506784424225433048184426114, 0, 1.48506784424225433048184426114, 1.77181195899956042692549423902, 2.58707418621103566308278941245, 3.39904537413216697526890502620, 3.86586642897977445123682498219, 4.46074750043514274375767878733, 4.73237059604909078169206468802, 5.40415150692962336038562713909, 5.94559455308120471165221523841, 6.37415500568501680402401167349, 6.70735828007316598449300123417, 7.32853404588086774982287709642, 7.86659196667261300109853799091, 8.201778117150140316635562063044

Graph of the $Z$-function along the critical line