Properties

Label 4-1143072-1.1-c1e2-0-6
Degree $4$
Conductor $1143072$
Sign $1$
Analytic cond. $72.8832$
Root an. cond. $2.92184$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 8-s + 10·13-s + 16-s + 6·17-s − 10·25-s + 10·26-s − 6·29-s + 32-s + 6·34-s + 4·37-s − 12·41-s + 49-s − 10·50-s + 10·52-s + 6·53-s − 6·58-s − 20·61-s + 64-s + 6·68-s + 4·73-s + 4·74-s − 12·82-s + 30·89-s + 16·97-s + 98-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.353·8-s + 2.77·13-s + 1/4·16-s + 1.45·17-s − 2·25-s + 1.96·26-s − 1.11·29-s + 0.176·32-s + 1.02·34-s + 0.657·37-s − 1.87·41-s + 1/7·49-s − 1.41·50-s + 1.38·52-s + 0.824·53-s − 0.787·58-s − 2.56·61-s + 1/8·64-s + 0.727·68-s + 0.468·73-s + 0.464·74-s − 1.32·82-s + 3.17·89-s + 1.62·97-s + 0.101·98-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1143072 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1143072 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1143072\)    =    \(2^{5} \cdot 3^{6} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(72.8832\)
Root analytic conductor: \(2.92184\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1143072,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.071419677\)
\(L(\frac12)\) \(\approx\) \(4.071419677\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
3 \( 1 \)
7$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good5$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
29$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
47$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 15 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.949595272551558511484925825699, −7.66081859530557802153309309893, −7.24729027002187867605972756035, −6.38983991712328031863989081821, −6.29670817383847541122613475379, −5.75498451669473966849176010933, −5.61879984028395623126782300752, −4.92409316048517899781293445732, −4.30645127647783484429164317499, −3.77842535731702409100199368470, −3.34773629764867655679280376645, −3.29476397189543990973285365054, −2.01879358291610012679245055865, −1.68869994047015348511995782895, −0.856193565353031792325176418947, 0.856193565353031792325176418947, 1.68869994047015348511995782895, 2.01879358291610012679245055865, 3.29476397189543990973285365054, 3.34773629764867655679280376645, 3.77842535731702409100199368470, 4.30645127647783484429164317499, 4.92409316048517899781293445732, 5.61879984028395623126782300752, 5.75498451669473966849176010933, 6.29670817383847541122613475379, 6.38983991712328031863989081821, 7.24729027002187867605972756035, 7.66081859530557802153309309893, 7.949595272551558511484925825699

Graph of the $Z$-function along the critical line