Properties

Label 4-34848-1.1-c1e2-0-23
Degree $4$
Conductor $34848$
Sign $-1$
Analytic cond. $2.22193$
Root an. cond. $1.22090$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 8-s + 9-s − 8·13-s + 16-s − 12·17-s − 18-s − 10·25-s + 8·26-s + 12·29-s − 32-s + 12·34-s + 36-s − 20·37-s + 12·41-s − 10·49-s + 10·50-s − 8·52-s − 12·58-s + 16·61-s + 64-s − 12·68-s − 72-s + 4·73-s + 20·74-s + 81-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.353·8-s + 1/3·9-s − 2.21·13-s + 1/4·16-s − 2.91·17-s − 0.235·18-s − 2·25-s + 1.56·26-s + 2.22·29-s − 0.176·32-s + 2.05·34-s + 1/6·36-s − 3.28·37-s + 1.87·41-s − 1.42·49-s + 1.41·50-s − 1.10·52-s − 1.57·58-s + 2.04·61-s + 1/8·64-s − 1.45·68-s − 0.117·72-s + 0.468·73-s + 2.32·74-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 34848 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 34848 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(34848\)    =    \(2^{5} \cdot 3^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(2.22193\)
Root analytic conductor: \(1.22090\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 34848,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
11$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good5$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
53$C_2$ \( ( 1 + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.21971960261641202232640310225, −9.702896608623430445687767205931, −8.958855021658912251315559727512, −8.767992898257258380407868928000, −8.013104010237496671597514230187, −7.47999694363717860882978383906, −6.77506565559004391547494912024, −6.73373984274544568686272664379, −5.80771575321423739175967870457, −4.75034201814524111107553764909, −4.69333471332706230755932945396, −3.62485072881439717663109857391, −2.37545091357255938865951638025, −2.12574870769826326935834056810, 0, 2.12574870769826326935834056810, 2.37545091357255938865951638025, 3.62485072881439717663109857391, 4.69333471332706230755932945396, 4.75034201814524111107553764909, 5.80771575321423739175967870457, 6.73373984274544568686272664379, 6.77506565559004391547494912024, 7.47999694363717860882978383906, 8.013104010237496671597514230187, 8.767992898257258380407868928000, 8.958855021658912251315559727512, 9.702896608623430445687767205931, 10.21971960261641202232640310225

Graph of the $Z$-function along the critical line