Properties

Label 4-22e4-1.1-c1e2-0-10
Degree $4$
Conductor $234256$
Sign $-1$
Analytic cond. $14.9363$
Root an. cond. $1.96589$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s + 2·5-s − 5·9-s + 4·10-s − 8·13-s − 4·16-s + 4·17-s − 10·18-s + 4·20-s − 7·25-s − 16·26-s − 8·32-s + 8·34-s − 10·36-s + 6·37-s + 16·41-s − 10·45-s − 10·49-s − 14·50-s − 16·52-s − 12·53-s − 24·61-s − 8·64-s − 16·65-s + 8·68-s − 8·73-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s + 0.894·5-s − 5/3·9-s + 1.26·10-s − 2.21·13-s − 16-s + 0.970·17-s − 2.35·18-s + 0.894·20-s − 7/5·25-s − 3.13·26-s − 1.41·32-s + 1.37·34-s − 5/3·36-s + 0.986·37-s + 2.49·41-s − 1.49·45-s − 1.42·49-s − 1.97·50-s − 2.21·52-s − 1.64·53-s − 3.07·61-s − 64-s − 1.98·65-s + 0.970·68-s − 0.936·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 234256 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234256 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(234256\)    =    \(2^{4} \cdot 11^{4}\)
Sign: $-1$
Analytic conductor: \(14.9363\)
Root analytic conductor: \(1.96589\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 234256,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - p T + p T^{2} \)
11 \( 1 \)
good3$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
5$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 15 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.979273038504653746902140082359, −7.961176778048713923667541484628, −7.78789607043645765017922373874, −7.39347658072832330462797120078, −6.34194634679926922702796543533, −6.23870064789214498217427813253, −5.68468142602311525135152832168, −5.41175071356617719099292784896, −4.75527439375896786693668259973, −4.44574490854809981150981932393, −3.52526734376529108704825072242, −2.84374992801449552338801496278, −2.63044898935838963010520851422, −1.87273627454943730491171614963, 0, 1.87273627454943730491171614963, 2.63044898935838963010520851422, 2.84374992801449552338801496278, 3.52526734376529108704825072242, 4.44574490854809981150981932393, 4.75527439375896786693668259973, 5.41175071356617719099292784896, 5.68468142602311525135152832168, 6.23870064789214498217427813253, 6.34194634679926922702796543533, 7.39347658072832330462797120078, 7.78789607043645765017922373874, 7.961176778048713923667541484628, 8.979273038504653746902140082359

Graph of the $Z$-function along the critical line