Properties

Label 4-23328-1.1-c1e2-0-8
Degree $4$
Conductor $23328$
Sign $-1$
Analytic cond. $1.48741$
Root an. cond. $1.10435$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 6·5-s + 8-s − 6·10-s − 8·13-s + 16-s − 6·20-s + 17·25-s − 8·26-s − 12·29-s + 32-s + 4·37-s − 6·40-s + 12·41-s − 13·49-s + 17·50-s − 8·52-s − 18·53-s − 12·58-s + 16·61-s + 64-s + 48·65-s − 14·73-s + 4·74-s − 6·80-s + 12·82-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 2.68·5-s + 0.353·8-s − 1.89·10-s − 2.21·13-s + 1/4·16-s − 1.34·20-s + 17/5·25-s − 1.56·26-s − 2.22·29-s + 0.176·32-s + 0.657·37-s − 0.948·40-s + 1.87·41-s − 1.85·49-s + 2.40·50-s − 1.10·52-s − 2.47·53-s − 1.57·58-s + 2.04·61-s + 1/8·64-s + 5.95·65-s − 1.63·73-s + 0.464·74-s − 0.670·80-s + 1.32·82-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 23328 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23328 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(23328\)    =    \(2^{5} \cdot 3^{6}\)
Sign: $-1$
Analytic conductor: \(1.48741\)
Root analytic conductor: \(1.10435\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 23328,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
3 \( 1 \)
good5$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
11$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
13$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
53$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 18 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.86482571623536481838849135667, −9.881080480790549207963868930122, −9.512741326522107701681952133776, −8.737948409524417511387388417952, −7.82723843094092867969941089213, −7.61880171096277894570972400592, −7.51148950331839783385046384041, −6.71508725988629390136097161445, −5.85096393191491862373045737952, −4.77709333112371596512170551343, −4.70373764496519643229180296651, −3.81269975524617156560988745696, −3.38549178369413487864105189864, −2.36301005321257278434888317321, 0, 2.36301005321257278434888317321, 3.38549178369413487864105189864, 3.81269975524617156560988745696, 4.70373764496519643229180296651, 4.77709333112371596512170551343, 5.85096393191491862373045737952, 6.71508725988629390136097161445, 7.51148950331839783385046384041, 7.61880171096277894570972400592, 7.82723843094092867969941089213, 8.737948409524417511387388417952, 9.512741326522107701681952133776, 9.881080480790549207963868930122, 10.86482571623536481838849135667

Graph of the $Z$-function along the critical line