Properties

Label 4-2080-1.1-c1e2-0-0
Degree $4$
Conductor $2080$
Sign $1$
Analytic cond. $0.132622$
Root an. cond. $0.603468$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s − 8-s + 4·9-s + 10-s − 3·13-s + 16-s − 6·17-s − 4·18-s − 20-s − 4·25-s + 3·26-s − 6·29-s − 32-s + 6·34-s + 4·36-s + 4·37-s + 40-s − 4·45-s + 14·49-s + 4·50-s − 3·52-s + 6·58-s − 2·61-s + 64-s + 3·65-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.353·8-s + 4/3·9-s + 0.316·10-s − 0.832·13-s + 1/4·16-s − 1.45·17-s − 0.942·18-s − 0.223·20-s − 4/5·25-s + 0.588·26-s − 1.11·29-s − 0.176·32-s + 1.02·34-s + 2/3·36-s + 0.657·37-s + 0.158·40-s − 0.596·45-s + 2·49-s + 0.565·50-s − 0.416·52-s + 0.787·58-s − 0.256·61-s + 1/8·64-s + 0.372·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2080 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2080 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2080\)    =    \(2^{5} \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(0.132622\)
Root analytic conductor: \(0.603468\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 2080,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4803631948\)
\(L(\frac12)\) \(\approx\) \(0.4803631948\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
5$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + p T^{2} ) \)
13$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 4 T + p T^{2} ) \)
good3$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - p T^{2} )^{2} \)
11$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2^2$ \( 1 + 16 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2^2$ \( 1 + 76 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 80 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
79$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 58 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.20859068784444078804919596956, −12.59086967665366017226981995880, −12.01019791255937568083245043080, −11.34656975509688312402616161032, −10.74781547782242050869487639672, −10.08922399836353334407924537776, −9.480918778573358190832723629444, −8.933390642891826377839652184385, −8.004172495143742733490166513119, −7.34239524010294972057117625494, −6.93300330028434354687859432943, −5.91298812586149253328721774965, −4.68473046101937618803253601661, −3.89295282825188061140108988893, −2.19543188028031805089419316236, 2.19543188028031805089419316236, 3.89295282825188061140108988893, 4.68473046101937618803253601661, 5.91298812586149253328721774965, 6.93300330028434354687859432943, 7.34239524010294972057117625494, 8.004172495143742733490166513119, 8.933390642891826377839652184385, 9.480918778573358190832723629444, 10.08922399836353334407924537776, 10.74781547782242050869487639672, 11.34656975509688312402616161032, 12.01019791255937568083245043080, 12.59086967665366017226981995880, 13.20859068784444078804919596956

Graph of the $Z$-function along the critical line