Properties

Label 4-180000-1.1-c1e2-0-5
Degree $4$
Conductor $180000$
Sign $1$
Analytic cond. $11.4769$
Root an. cond. $1.84058$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 8-s + 9-s + 12·13-s + 16-s + 4·17-s − 18-s − 12·26-s − 32-s − 4·34-s + 36-s + 4·37-s + 4·41-s − 10·49-s + 12·52-s + 12·53-s + 4·61-s + 64-s + 4·68-s − 72-s − 8·73-s − 4·74-s + 81-s − 4·82-s − 20·89-s − 16·97-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.353·8-s + 1/3·9-s + 3.32·13-s + 1/4·16-s + 0.970·17-s − 0.235·18-s − 2.35·26-s − 0.176·32-s − 0.685·34-s + 1/6·36-s + 0.657·37-s + 0.624·41-s − 1.42·49-s + 1.66·52-s + 1.64·53-s + 0.512·61-s + 1/8·64-s + 0.485·68-s − 0.117·72-s − 0.936·73-s − 0.464·74-s + 1/9·81-s − 0.441·82-s − 2.11·89-s − 1.62·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 180000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(180000\)    =    \(2^{5} \cdot 3^{2} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(11.4769\)
Root analytic conductor: \(1.84058\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 180000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.574994268\)
\(L(\frac12)\) \(\approx\) \(1.574994268\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
5 \( 1 \)
good7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.876429119746077603127030187363, −8.831748546434365307733167695606, −8.236259450125909594320955817325, −7.907415924764968545249330860332, −7.34830902118093822137916374938, −6.60420630283526755468874076032, −6.39955394184406631525545593399, −5.66765515312328094809085573246, −5.54667504701134155415335928612, −4.40421151945420287303938949967, −3.85245454580381340504020564721, −3.43332661175523197849238647019, −2.66426897593599555100997020524, −1.48708143658565903074344661320, −1.09380620717066232730427473522, 1.09380620717066232730427473522, 1.48708143658565903074344661320, 2.66426897593599555100997020524, 3.43332661175523197849238647019, 3.85245454580381340504020564721, 4.40421151945420287303938949967, 5.54667504701134155415335928612, 5.66765515312328094809085573246, 6.39955394184406631525545593399, 6.60420630283526755468874076032, 7.34830902118093822137916374938, 7.907415924764968545249330860332, 8.236259450125909594320955817325, 8.831748546434365307733167695606, 8.876429119746077603127030187363

Graph of the $Z$-function along the critical line