Properties

Label 4-826875-1.1-c1e2-0-13
Degree $4$
Conductor $826875$
Sign $-1$
Analytic cond. $52.7222$
Root an. cond. $2.69462$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·4-s − 2·7-s + 9-s + 3·12-s + 12·13-s + 5·16-s − 16·19-s + 2·21-s − 27-s + 6·28-s + 8·31-s − 3·36-s + 4·37-s − 12·39-s − 8·43-s − 5·48-s + 3·49-s − 36·52-s + 16·57-s − 4·61-s − 2·63-s − 3·64-s − 8·67-s + 4·73-s + 48·76-s + 16·79-s + ⋯
L(s)  = 1  − 0.577·3-s − 3/2·4-s − 0.755·7-s + 1/3·9-s + 0.866·12-s + 3.32·13-s + 5/4·16-s − 3.67·19-s + 0.436·21-s − 0.192·27-s + 1.13·28-s + 1.43·31-s − 1/2·36-s + 0.657·37-s − 1.92·39-s − 1.21·43-s − 0.721·48-s + 3/7·49-s − 4.99·52-s + 2.11·57-s − 0.512·61-s − 0.251·63-s − 3/8·64-s − 0.977·67-s + 0.468·73-s + 5.50·76-s + 1.80·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 826875 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 826875 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(826875\)    =    \(3^{3} \cdot 5^{4} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(52.7222\)
Root analytic conductor: \(2.69462\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 826875,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( 1 + T \)
5 \( 1 \)
7$C_1$ \( ( 1 + T )^{2} \)
good2$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.076537091159247246373578439378, −7.977292875613882940498903211299, −6.63585561999092413112257281527, −6.61969387271080601507676579543, −6.16149878863294527126110458225, −6.00194883384034511830604383024, −5.26003387597415288810047334583, −4.59872715232209164053538776872, −4.28899163544686891904773944334, −3.76479055165370209201786288014, −3.63296121870362536460359180450, −2.64765980094137076229438805768, −1.70229766620154856330402199105, −0.917037574559643692523689356640, 0, 0.917037574559643692523689356640, 1.70229766620154856330402199105, 2.64765980094137076229438805768, 3.63296121870362536460359180450, 3.76479055165370209201786288014, 4.28899163544686891904773944334, 4.59872715232209164053538776872, 5.26003387597415288810047334583, 6.00194883384034511830604383024, 6.16149878863294527126110458225, 6.61969387271080601507676579543, 6.63585561999092413112257281527, 7.977292875613882940498903211299, 8.076537091159247246373578439378

Graph of the $Z$-function along the critical line