Properties

Label 4-75411-1.1-c1e2-0-5
Degree $4$
Conductor $75411$
Sign $-1$
Analytic cond. $4.80827$
Root an. cond. $1.48080$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s − 2·7-s − 6·13-s − 3·16-s − 19-s − 4·25-s − 2·28-s − 6·31-s − 4·37-s − 4·43-s − 3·49-s − 6·52-s + 12·61-s − 7·64-s − 2·67-s − 76-s + 4·79-s + 12·91-s + 18·97-s − 4·100-s − 24·103-s + 14·109-s + 6·112-s − 14·121-s − 6·124-s + 127-s + 131-s + ⋯
L(s)  = 1  + 1/2·4-s − 0.755·7-s − 1.66·13-s − 3/4·16-s − 0.229·19-s − 4/5·25-s − 0.377·28-s − 1.07·31-s − 0.657·37-s − 0.609·43-s − 3/7·49-s − 0.832·52-s + 1.53·61-s − 7/8·64-s − 0.244·67-s − 0.114·76-s + 0.450·79-s + 1.25·91-s + 1.82·97-s − 2/5·100-s − 2.36·103-s + 1.34·109-s + 0.566·112-s − 1.27·121-s − 0.538·124-s + 0.0887·127-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 75411 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75411 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(75411\)    =    \(3^{4} \cdot 7^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(4.80827\)
Root analytic conductor: \(1.48080\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 75411,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
7$C_2$ \( 1 + 2 T + p T^{2} \)
19$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 2 T + p T^{2} ) \)
good2$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2^2$ \( 1 - 20 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 22 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 70 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 22 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 86 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.451808115510595304934440107969, −9.284493818243571866566646306503, −8.523866780545975415324122899128, −7.962936558854149882361927378320, −7.33995880204398288349734876353, −7.00108325834014391470111729249, −6.56218917408877805692663255116, −5.91990419890763971288746040554, −5.26463306290841073268659490826, −4.75590964208523306519663302548, −3.97450961899134079626108319531, −3.28792973835471695930734978908, −2.48940279941837917395101269178, −1.91806497648452369136382678113, 0, 1.91806497648452369136382678113, 2.48940279941837917395101269178, 3.28792973835471695930734978908, 3.97450961899134079626108319531, 4.75590964208523306519663302548, 5.26463306290841073268659490826, 5.91990419890763971288746040554, 6.56218917408877805692663255116, 7.00108325834014391470111729249, 7.33995880204398288349734876353, 7.962936558854149882361927378320, 8.523866780545975415324122899128, 9.284493818243571866566646306503, 9.451808115510595304934440107969

Graph of the $Z$-function along the critical line