Properties

Degree $4$
Conductor $6912$
Sign $1$
Motivic weight $1$
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s − 4·13-s + 8·19-s − 6·25-s + 27-s − 16·31-s + 12·37-s − 4·39-s − 8·43-s − 14·49-s + 8·57-s − 4·61-s + 8·67-s + 20·73-s − 6·75-s + 16·79-s + 81-s − 16·93-s + 4·97-s − 32·103-s − 4·109-s + 12·111-s − 4·117-s − 6·121-s + 127-s − 8·129-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s − 1.10·13-s + 1.83·19-s − 6/5·25-s + 0.192·27-s − 2.87·31-s + 1.97·37-s − 0.640·39-s − 1.21·43-s − 2·49-s + 1.05·57-s − 0.512·61-s + 0.977·67-s + 2.34·73-s − 0.692·75-s + 1.80·79-s + 1/9·81-s − 1.65·93-s + 0.406·97-s − 3.15·103-s − 0.383·109-s + 1.13·111-s − 0.369·117-s − 0.545·121-s + 0.0887·127-s − 0.704·129-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6912 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6912 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(6912\)    =    \(2^{8} \cdot 3^{3}\)
Sign: $1$
Motivic weight: \(1\)
Character: $\chi_{6912} (1, \cdot )$
Sato-Tate group: $\mathrm{SU}(2)$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 6912,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.049434289\)
\(L(\frac12)\) \(\approx\) \(1.049434289\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( 1 - T \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.08490635724128893343813281351, −11.14455695554061766980709369025, −11.02059068705223596291987853205, −9.747086677582411849557090474382, −9.656797755147918818405236990829, −9.298977106556460794427243537385, −8.173282349834764667604075089133, −7.77541900804615864403738320707, −7.26958585488936859387169650645, −6.50812189570177474416634496690, −5.48498394296229820428473072147, −5.01357758335939619070346679818, −3.89741909491206350829507060388, −3.14826068230388029805668446658, −1.97363471421369880359461961552, 1.97363471421369880359461961552, 3.14826068230388029805668446658, 3.89741909491206350829507060388, 5.01357758335939619070346679818, 5.48498394296229820428473072147, 6.50812189570177474416634496690, 7.26958585488936859387169650645, 7.77541900804615864403738320707, 8.173282349834764667604075089133, 9.298977106556460794427243537385, 9.656797755147918818405236990829, 9.747086677582411849557090474382, 11.02059068705223596291987853205, 11.14455695554061766980709369025, 12.08490635724128893343813281351

Graph of the $Z$-function along the critical line