Properties

Label 4-555579-1.1-c1e2-0-8
Degree $4$
Conductor $555579$
Sign $-1$
Analytic cond. $35.4241$
Root an. cond. $2.43963$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·4-s − 4·7-s − 2·13-s + 5·16-s − 19-s − 8·25-s − 12·28-s + 8·31-s + 6·37-s + 2·49-s − 6·52-s − 16·61-s + 3·64-s − 20·67-s + 4·73-s − 3·76-s + 4·79-s + 8·91-s − 18·97-s − 24·100-s + 12·103-s + 22·109-s − 20·112-s + 4·121-s + 24·124-s + 127-s + 131-s + ⋯
L(s)  = 1  + 3/2·4-s − 1.51·7-s − 0.554·13-s + 5/4·16-s − 0.229·19-s − 8/5·25-s − 2.26·28-s + 1.43·31-s + 0.986·37-s + 2/7·49-s − 0.832·52-s − 2.04·61-s + 3/8·64-s − 2.44·67-s + 0.468·73-s − 0.344·76-s + 0.450·79-s + 0.838·91-s − 1.82·97-s − 2.39·100-s + 1.18·103-s + 2.10·109-s − 1.88·112-s + 4/11·121-s + 2.15·124-s + 0.0887·127-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 555579 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 555579 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(555579\)    =    \(3^{4} \cdot 19^{3}\)
Sign: $-1$
Analytic conductor: \(35.4241\)
Root analytic conductor: \(2.43963\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 555579,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
19$C_1$ \( 1 + T \)
good2$C_2^2$ \( 1 - 3 T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
7$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 36 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
37$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 86 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 98 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 116 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 94 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.107395110056093026434156650477, −7.55244798122753458130865425531, −7.37329995126136806994410174998, −6.83910512728892399521935566081, −6.28548306673646853527100381142, −6.02950278814659044351983412645, −5.91349134597759617323525459700, −4.86517006327307671822610956547, −4.44541312687435534988529591311, −3.65666760533142611983188590748, −3.17521013186538179753526943634, −2.67612331000190134273821497347, −2.21398502546222424039556682543, −1.36419561150181600465757028761, 0, 1.36419561150181600465757028761, 2.21398502546222424039556682543, 2.67612331000190134273821497347, 3.17521013186538179753526943634, 3.65666760533142611983188590748, 4.44541312687435534988529591311, 4.86517006327307671822610956547, 5.91349134597759617323525459700, 6.02950278814659044351983412645, 6.28548306673646853527100381142, 6.83910512728892399521935566081, 7.37329995126136806994410174998, 7.55244798122753458130865425531, 8.107395110056093026434156650477

Graph of the $Z$-function along the critical line