Properties

Label 4-720e2-1.1-c1e2-0-64
Degree $4$
Conductor $518400$
Sign $-1$
Analytic cond. $33.0536$
Root an. cond. $2.39775$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·13-s − 25-s + 8·31-s − 12·37-s + 16·43-s − 10·49-s − 12·61-s − 16·67-s + 12·73-s − 8·79-s + 12·97-s − 16·103-s − 20·109-s + 10·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  − 1.10·13-s − 1/5·25-s + 1.43·31-s − 1.97·37-s + 2.43·43-s − 1.42·49-s − 1.53·61-s − 1.95·67-s + 1.40·73-s − 0.900·79-s + 1.21·97-s − 1.57·103-s − 1.91·109-s + 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2/13·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 518400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 518400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(518400\)    =    \(2^{8} \cdot 3^{4} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(33.0536\)
Root analytic conductor: \(2.39775\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 518400,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_2$ \( 1 + T^{2} \)
good7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
71$C_2^2$ \( 1 - 66 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 62 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.305777236497443070782534038490, −7.71329275402156567470165746108, −7.41690505093324189912719380424, −6.99501538087453616784334179820, −6.38630308579687055413134181452, −6.02865089013153653168839127385, −5.44679955410706631858039571597, −4.88259272422500670901481703819, −4.54817272396579411843012119579, −3.96435605934167431298704963621, −3.22572062031461984566707782857, −2.74014153651728842925549978023, −2.09220771280158455955998898349, −1.25110772659726207072734822662, 0, 1.25110772659726207072734822662, 2.09220771280158455955998898349, 2.74014153651728842925549978023, 3.22572062031461984566707782857, 3.96435605934167431298704963621, 4.54817272396579411843012119579, 4.88259272422500670901481703819, 5.44679955410706631858039571597, 6.02865089013153653168839127385, 6.38630308579687055413134181452, 6.99501538087453616784334179820, 7.41690505093324189912719380424, 7.71329275402156567470165746108, 8.305777236497443070782534038490

Graph of the $Z$-function along the critical line