Properties

Label 4-720e2-1.1-c1e2-0-48
Degree $4$
Conductor $518400$
Sign $-1$
Analytic cond. $33.0536$
Root an. cond. $2.39775$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s − 8·13-s + 8·19-s + 25-s + 8·31-s + 16·37-s − 16·43-s − 2·49-s + 4·61-s + 8·67-s − 20·73-s + 8·79-s + 32·91-s + 4·97-s − 4·103-s + 4·109-s + 14·121-s + 127-s + 131-s − 32·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  − 1.51·7-s − 2.21·13-s + 1.83·19-s + 1/5·25-s + 1.43·31-s + 2.63·37-s − 2.43·43-s − 2/7·49-s + 0.512·61-s + 0.977·67-s − 2.34·73-s + 0.900·79-s + 3.35·91-s + 0.406·97-s − 0.394·103-s + 0.383·109-s + 1.27·121-s + 0.0887·127-s + 0.0873·131-s − 2.77·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 518400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 518400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(518400\)    =    \(2^{8} \cdot 3^{4} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(33.0536\)
Root analytic conductor: \(2.39775\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 518400,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good7$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
13$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.172980925912156702359943473709, −7.72126509708723736389564020435, −7.37359522787901633319248676810, −6.90901872656979444052935726709, −6.44739734143467503320214543326, −6.10474012488799251205190118618, −5.41124788289643481201476653741, −4.89127133089075044081252672966, −4.64413693293268396460594014295, −3.80702296297205902361458628051, −3.06916737303741767809697908608, −2.91539889390888382580520587833, −2.25797943481862032806953514483, −1.06503795092042453789503502485, 0, 1.06503795092042453789503502485, 2.25797943481862032806953514483, 2.91539889390888382580520587833, 3.06916737303741767809697908608, 3.80702296297205902361458628051, 4.64413693293268396460594014295, 4.89127133089075044081252672966, 5.41124788289643481201476653741, 6.10474012488799251205190118618, 6.44739734143467503320214543326, 6.90901872656979444052935726709, 7.37359522787901633319248676810, 7.72126509708723736389564020435, 8.172980925912156702359943473709

Graph of the $Z$-function along the critical line