Properties

Label 4-456300-1.1-c1e2-0-9
Degree $4$
Conductor $456300$
Sign $-1$
Analytic cond. $29.0940$
Root an. cond. $2.32247$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 4-s + 9-s − 12-s + 2·13-s + 16-s + 8·19-s + 25-s − 27-s − 16·31-s + 36-s − 20·37-s − 2·39-s + 8·43-s − 48-s − 14·49-s + 2·52-s − 8·57-s − 4·61-s + 64-s − 24·67-s + 4·73-s − 75-s + 8·76-s − 32·79-s + 81-s + 16·93-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/2·4-s + 1/3·9-s − 0.288·12-s + 0.554·13-s + 1/4·16-s + 1.83·19-s + 1/5·25-s − 0.192·27-s − 2.87·31-s + 1/6·36-s − 3.28·37-s − 0.320·39-s + 1.21·43-s − 0.144·48-s − 2·49-s + 0.277·52-s − 1.05·57-s − 0.512·61-s + 1/8·64-s − 2.93·67-s + 0.468·73-s − 0.115·75-s + 0.917·76-s − 3.60·79-s + 1/9·81-s + 1.65·93-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 456300 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 456300 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(456300\)    =    \(2^{2} \cdot 3^{3} \cdot 5^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(29.0940\)
Root analytic conductor: \(2.32247\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 456300,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
3$C_1$ \( 1 + T \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
13$C_1$ \( ( 1 - T )^{2} \)
good7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 16 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
97$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.490403204098803911613209618504, −7.54788789198252757941968322284, −7.45586944398122020573570806182, −7.03582983327921838179279968038, −6.57267675826487089075525795107, −5.88475078175345459986396322172, −5.43160779320744251383504417132, −5.36101206913072414201885147070, −4.53496762516360346181339328954, −3.89256533853822824063870308537, −3.26654328534844814185904778325, −2.98523621593750721047361308357, −1.63917888763865576740316873481, −1.55977141690761434296396620452, 0, 1.55977141690761434296396620452, 1.63917888763865576740316873481, 2.98523621593750721047361308357, 3.26654328534844814185904778325, 3.89256533853822824063870308537, 4.53496762516360346181339328954, 5.36101206913072414201885147070, 5.43160779320744251383504417132, 5.88475078175345459986396322172, 6.57267675826487089075525795107, 7.03582983327921838179279968038, 7.45586944398122020573570806182, 7.54788789198252757941968322284, 8.490403204098803911613209618504

Graph of the $Z$-function along the critical line