Properties

Label 4-192e2-1.1-c1e2-0-9
Degree $4$
Conductor $36864$
Sign $-1$
Analytic cond. $2.35048$
Root an. cond. $1.23819$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 9-s − 12·19-s − 2·25-s + 4·27-s − 4·43-s − 10·49-s + 24·57-s − 4·67-s − 12·73-s + 4·75-s − 11·81-s − 20·97-s + 14·121-s + 127-s + 8·129-s + 131-s + 137-s + 139-s + 20·147-s + 149-s + 151-s + 157-s + 163-s + 167-s − 22·169-s − 12·171-s + ⋯
L(s)  = 1  − 1.15·3-s + 1/3·9-s − 2.75·19-s − 2/5·25-s + 0.769·27-s − 0.609·43-s − 1.42·49-s + 3.17·57-s − 0.488·67-s − 1.40·73-s + 0.461·75-s − 1.22·81-s − 2.03·97-s + 1.27·121-s + 0.0887·127-s + 0.704·129-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1.64·147-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.69·169-s − 0.917·171-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 36864 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 36864 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(36864\)    =    \(2^{12} \cdot 3^{2}\)
Sign: $-1$
Analytic conductor: \(2.35048\)
Root analytic conductor: \(1.23819\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 36864,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + 2 T + p T^{2} \)
good5$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - p T^{2} )^{2} \)
19$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - 110 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
71$C_2^2$ \( 1 + 110 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
89$C_2^2$ \( 1 + 110 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.23233687889639886881720044925, −9.730985256268271424878295911920, −9.019660204875550419148497591382, −8.364955351789872564250717727993, −8.215028652014338750632346686889, −7.19250214882024512254378722525, −6.74848060717112410656014338963, −6.09553790955098515565552989321, −5.91562815270661005160626581722, −4.97153580512610098325521001803, −4.52827833300760369208621410126, −3.84252961453441711169051333538, −2.76608702409746176095302424855, −1.75139797086746412243454574915, 0, 1.75139797086746412243454574915, 2.76608702409746176095302424855, 3.84252961453441711169051333538, 4.52827833300760369208621410126, 4.97153580512610098325521001803, 5.91562815270661005160626581722, 6.09553790955098515565552989321, 6.74848060717112410656014338963, 7.19250214882024512254378722525, 8.215028652014338750632346686889, 8.364955351789872564250717727993, 9.019660204875550419148497591382, 9.730985256268271424878295911920, 10.23233687889639886881720044925

Graph of the $Z$-function along the critical line