Properties

Label 4-289737-1.1-c1e2-0-4
Degree $4$
Conductor $289737$
Sign $-1$
Analytic cond. $18.4738$
Root an. cond. $2.07319$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s − 2·7-s − 3·16-s + 2·25-s − 2·28-s − 6·31-s − 4·37-s + 2·43-s − 3·49-s − 12·61-s − 7·64-s + 4·67-s + 73-s + 4·79-s − 12·97-s + 2·100-s − 18·103-s − 4·109-s + 6·112-s − 2·121-s − 6·124-s + 127-s + 131-s + 137-s + 139-s − 4·148-s + 149-s + ⋯
L(s)  = 1  + 1/2·4-s − 0.755·7-s − 3/4·16-s + 2/5·25-s − 0.377·28-s − 1.07·31-s − 0.657·37-s + 0.304·43-s − 3/7·49-s − 1.53·61-s − 7/8·64-s + 0.488·67-s + 0.117·73-s + 0.450·79-s − 1.21·97-s + 1/5·100-s − 1.77·103-s − 0.383·109-s + 0.566·112-s − 0.181·121-s − 0.538·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.328·148-s + 0.0819·149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 289737 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 289737 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(289737\)    =    \(3^{4} \cdot 7^{2} \cdot 73\)
Sign: $-1$
Analytic conductor: \(18.4738\)
Root analytic conductor: \(2.07319\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 289737,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
7$C_2$ \( 1 + 2 T + p T^{2} \)
73$C_1$$\times$$C_2$ \( ( 1 + T )( 1 - 2 T + p T^{2} ) \)
good2$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 74 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 74 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 22 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 122 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.629083932375796096800797260811, −8.183029188681408827165644430257, −7.56068658384449826906220734072, −7.18126769922215475671340318066, −6.67632316476880693523526584236, −6.40038811554054155194942404547, −5.77596435001089733645172495640, −5.27779615193093456793302363658, −4.67849391427767565028381587599, −4.05555799868875227571268644430, −3.44905392934496712050613025301, −2.87968961024498799673346089621, −2.24477395196645851609933650161, −1.43339146186309693888282332176, 0, 1.43339146186309693888282332176, 2.24477395196645851609933650161, 2.87968961024498799673346089621, 3.44905392934496712050613025301, 4.05555799868875227571268644430, 4.67849391427767565028381587599, 5.27779615193093456793302363658, 5.77596435001089733645172495640, 6.40038811554054155194942404547, 6.67632316476880693523526584236, 7.18126769922215475671340318066, 7.56068658384449826906220734072, 8.183029188681408827165644430257, 8.629083932375796096800797260811

Graph of the $Z$-function along the critical line