Properties

Label 4-1158948-1.1-c1e2-0-5
Degree $4$
Conductor $1158948$
Sign $1$
Analytic cond. $73.8955$
Root an. cond. $2.93193$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s − 2·7-s + 8·13-s + 16-s − 2·25-s + 2·28-s + 8·31-s + 12·37-s + 20·43-s + 3·49-s − 8·52-s + 4·61-s − 64-s + 8·67-s + 13·73-s + 16·79-s − 16·91-s + 4·97-s + 2·100-s − 8·103-s − 12·109-s − 2·112-s − 18·121-s − 8·124-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  − 1/2·4-s − 0.755·7-s + 2.21·13-s + 1/4·16-s − 2/5·25-s + 0.377·28-s + 1.43·31-s + 1.97·37-s + 3.04·43-s + 3/7·49-s − 1.10·52-s + 0.512·61-s − 1/8·64-s + 0.977·67-s + 1.52·73-s + 1.80·79-s − 1.67·91-s + 0.406·97-s + 1/5·100-s − 0.788·103-s − 1.14·109-s − 0.188·112-s − 1.63·121-s − 0.718·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1158948 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1158948 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1158948\)    =    \(2^{2} \cdot 3^{4} \cdot 7^{2} \cdot 73\)
Sign: $1$
Analytic conductor: \(73.8955\)
Root analytic conductor: \(2.93193\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1158948,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.103150558\)
\(L(\frac12)\) \(\approx\) \(2.103150558\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
3 \( 1 \)
7$C_1$ \( ( 1 + T )^{2} \)
73$C_1$$\times$$C_2$ \( ( 1 + T )( 1 - 14 T + p T^{2} ) \)
good5$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 8 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2^2$ \( 1 - 62 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 54 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 102 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.103098619233242840593532989184, −7.78066763291057376932457012527, −7.17798727368974979686318822900, −6.49300223449028653285865996600, −6.27942522726260046183272711593, −5.98458452061689927476785484740, −5.47980394922742865581936977217, −4.87854429529578469455797236697, −4.24323550317964433133944467004, −3.79501884726705358055623041787, −3.66585800400129297866312155773, −2.71109017621754591930405225987, −2.41367252406877819691446069392, −1.18291351540065578327690139424, −0.794524985258601206646934844449, 0.794524985258601206646934844449, 1.18291351540065578327690139424, 2.41367252406877819691446069392, 2.71109017621754591930405225987, 3.66585800400129297866312155773, 3.79501884726705358055623041787, 4.24323550317964433133944467004, 4.87854429529578469455797236697, 5.47980394922742865581936977217, 5.98458452061689927476785484740, 6.27942522726260046183272711593, 6.49300223449028653285865996600, 7.17798727368974979686318822900, 7.78066763291057376932457012527, 8.103098619233242840593532989184

Graph of the $Z$-function along the critical line