Properties

Label 4-336e2-1.1-c1e2-0-65
Degree $4$
Conductor $112896$
Sign $-1$
Analytic cond. $7.19834$
Root an. cond. $1.63797$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 2·7-s + 9-s − 8·13-s − 4·19-s − 4·21-s − 10·25-s − 4·27-s + 8·31-s + 4·37-s − 16·39-s − 16·43-s + 3·49-s − 8·57-s + 16·61-s − 2·63-s + 8·67-s + 4·73-s − 20·75-s − 16·79-s − 11·81-s + 16·91-s + 16·93-s − 20·97-s + 8·103-s + 4·109-s + 8·111-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.755·7-s + 1/3·9-s − 2.21·13-s − 0.917·19-s − 0.872·21-s − 2·25-s − 0.769·27-s + 1.43·31-s + 0.657·37-s − 2.56·39-s − 2.43·43-s + 3/7·49-s − 1.05·57-s + 2.04·61-s − 0.251·63-s + 0.977·67-s + 0.468·73-s − 2.30·75-s − 1.80·79-s − 1.22·81-s + 1.67·91-s + 1.65·93-s − 2.03·97-s + 0.788·103-s + 0.383·109-s + 0.759·111-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 112896 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112896 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(112896\)    =    \(2^{8} \cdot 3^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(7.19834\)
Root analytic conductor: \(1.63797\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 112896,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 - 2 T + p T^{2} \)
7$C_1$ \( ( 1 + T )^{2} \)
good5$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.392494157732895222790142944171, −8.686268182491541384374530740513, −8.182643116839158569055135937831, −7.967527986115067076241988284772, −7.29668061464756137953129595214, −6.84458804347565715458286520604, −6.34752255234086455771568318662, −5.62168100149868099368912779374, −5.05202336643031434355439952711, −4.32309265725798888275246837851, −3.82418745638366191622617161116, −3.04185374086143547449059084416, −2.48514181668809031419660323366, −1.98782431119292345428047370492, 0, 1.98782431119292345428047370492, 2.48514181668809031419660323366, 3.04185374086143547449059084416, 3.82418745638366191622617161116, 4.32309265725798888275246837851, 5.05202336643031434355439952711, 5.62168100149868099368912779374, 6.34752255234086455771568318662, 6.84458804347565715458286520604, 7.29668061464756137953129595214, 7.967527986115067076241988284772, 8.182643116839158569055135937831, 8.686268182491541384374530740513, 9.392494157732895222790142944171

Graph of the $Z$-function along the critical line