Properties

Degree 4
Conductor $ 2^{8} \cdot 3^{2} \cdot 7^{2} $
Sign $-1$
Motivic weight 1
Primitive no
Self-dual yes
Analytic rank 1

Origins

Origins of factors

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s − 3·9-s + 4·13-s − 16·19-s − 6·25-s − 16·31-s − 4·37-s + 8·43-s + 3·49-s − 12·61-s − 6·63-s + 8·67-s + 20·73-s − 32·79-s + 9·81-s + 8·91-s − 12·97-s + 32·103-s − 20·109-s − 12·117-s − 6·121-s + 127-s + 131-s − 32·133-s + 137-s + 139-s + 149-s + ⋯
L(s)  = 1  + 0.755·7-s − 9-s + 1.10·13-s − 3.67·19-s − 6/5·25-s − 2.87·31-s − 0.657·37-s + 1.21·43-s + 3/7·49-s − 1.53·61-s − 0.755·63-s + 0.977·67-s + 2.34·73-s − 3.60·79-s + 81-s + 0.838·91-s − 1.21·97-s + 3.15·103-s − 1.91·109-s − 1.10·117-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s − 2.77·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 112896 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 112896 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(4\)
\( N \)  =  \(112896\)    =    \(2^{8} \cdot 3^{2} \cdot 7^{2}\)
\( \varepsilon \)  =  $-1$
motivic weight  =  \(1\)
character  :  $\chi_{112896} (1, \cdot )$
Sato-Tate  :  $\mathrm{SU}(2)$
primitive  :  no
self-dual  :  yes
analytic rank  =  1
Selberg data  =  $(4,\ 112896,\ (\ :1/2, 1/2),\ -1)$
$L(1)$  $=$  $0$
$L(\frac12)$  $=$  $0$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{2,\;3,\;7\}$, \[F_p(T) = 1 - a_p T + b_p T^2 - a_p p T^3 + p^2 T^4 \]with $b_p = a_p^2 - a_{p^2}$. If $p \in \{2,\;3,\;7\}$, then $F_p$ is a polynomial of degree at most 3.
$p$$\Gal(F_p)$$F_p$
bad2 \( 1 \)
3$C_2$ \( 1 + p T^{2} \)
7$C_1$ \( ( 1 - T )^{2} \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 16 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−9.117894034638208548514808203742, −8.560607806232820418165457845354, −8.471445676889714342866171635546, −7.930145034161771419271559855193, −7.27554251802063504690854958433, −6.67949194679031572918581545842, −6.02199704414356721368436371140, −5.82613210142107824134972732669, −5.19403339606859488056646370743, −4.18465932715971087267449515138, −4.12306698900858528561316116411, −3.27599538980291781109010644776, −2.14556791802447766709825303506, −1.86537117894268329726575064930, 0, 1.86537117894268329726575064930, 2.14556791802447766709825303506, 3.27599538980291781109010644776, 4.12306698900858528561316116411, 4.18465932715971087267449515138, 5.19403339606859488056646370743, 5.82613210142107824134972732669, 6.02199704414356721368436371140, 6.67949194679031572918581545842, 7.27554251802063504690854958433, 7.930145034161771419271559855193, 8.471445676889714342866171635546, 8.560607806232820418165457845354, 9.117894034638208548514808203742

Graph of the $Z$-function along the critical line