Properties

Label 4-5282739-1.1-c1e2-0-3
Degree $4$
Conductor $5282739$
Sign $-1$
Analytic cond. $336.832$
Root an. cond. $4.28403$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·4-s − 6·5-s + 11-s + 12·16-s + 24·20-s − 6·23-s + 17·25-s + 10·31-s + 22·37-s − 4·44-s + 49-s + 12·53-s − 6·55-s + 18·59-s − 32·64-s + 10·67-s − 18·71-s − 72·80-s + 6·89-s + 24·92-s − 2·97-s − 68·100-s − 8·103-s + 6·113-s + 36·115-s + 121-s − 40·124-s + ⋯
L(s)  = 1  − 2·4-s − 2.68·5-s + 0.301·11-s + 3·16-s + 5.36·20-s − 1.25·23-s + 17/5·25-s + 1.79·31-s + 3.61·37-s − 0.603·44-s + 1/7·49-s + 1.64·53-s − 0.809·55-s + 2.34·59-s − 4·64-s + 1.22·67-s − 2.13·71-s − 8.04·80-s + 0.635·89-s + 2.50·92-s − 0.203·97-s − 6.79·100-s − 0.788·103-s + 0.564·113-s + 3.35·115-s + 1/11·121-s − 3.59·124-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5282739 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5282739 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(5282739\)    =    \(3^{4} \cdot 7^{2} \cdot 11^{3}\)
Sign: $-1$
Analytic conductor: \(336.832\)
Root analytic conductor: \(4.28403\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 5282739,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
7$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
11$C_1$ \( 1 - T \)
good2$C_2$ \( ( 1 + p T^{2} )^{2} \)
5$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 11 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.32024742481712425147757589138, −6.81062854234304516450450908396, −6.19954355560081421436202244959, −5.80492978659389909733109582978, −5.35059430166220814299615131856, −4.73710013360513636713787424546, −4.31297732989480839195031476377, −4.10975481209818427421549838760, −4.09981281561803996499645678286, −3.45131480487179814577542455626, −3.01251424255196705097668786615, −2.33532150394146050566081783680, −0.896810126936371404627589617928, −0.821355075233086309329735836862, 0, 0.821355075233086309329735836862, 0.896810126936371404627589617928, 2.33532150394146050566081783680, 3.01251424255196705097668786615, 3.45131480487179814577542455626, 4.09981281561803996499645678286, 4.10975481209818427421549838760, 4.31297732989480839195031476377, 4.73710013360513636713787424546, 5.35059430166220814299615131856, 5.80492978659389909733109582978, 6.19954355560081421436202244959, 6.81062854234304516450450908396, 7.32024742481712425147757589138

Graph of the $Z$-function along the critical line