Properties

Label 4-4791600-1.1-c1e2-0-11
Degree $4$
Conductor $4791600$
Sign $1$
Analytic cond. $305.516$
Root an. cond. $4.18079$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 2·5-s + 3·9-s + 11-s − 4·15-s + 3·25-s + 4·27-s + 16·31-s + 2·33-s + 4·37-s − 6·45-s − 10·49-s + 12·53-s − 2·55-s − 24·59-s − 8·67-s + 6·75-s + 5·81-s − 12·89-s + 32·93-s + 28·97-s + 3·99-s − 8·103-s + 8·111-s + 12·113-s + 121-s − 4·125-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.894·5-s + 9-s + 0.301·11-s − 1.03·15-s + 3/5·25-s + 0.769·27-s + 2.87·31-s + 0.348·33-s + 0.657·37-s − 0.894·45-s − 1.42·49-s + 1.64·53-s − 0.269·55-s − 3.12·59-s − 0.977·67-s + 0.692·75-s + 5/9·81-s − 1.27·89-s + 3.31·93-s + 2.84·97-s + 0.301·99-s − 0.788·103-s + 0.759·111-s + 1.12·113-s + 1/11·121-s − 0.357·125-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4791600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4791600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(4791600\)    =    \(2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11^{3}\)
Sign: $1$
Analytic conductor: \(305.516\)
Root analytic conductor: \(4.18079\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 4791600,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.284526242\)
\(L(\frac12)\) \(\approx\) \(3.284526242\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 - T )^{2} \)
5$C_1$ \( ( 1 + T )^{2} \)
11$C_1$ \( 1 - T \)
good7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.30006072679712949741046823488, −7.19099618254400368447274970134, −6.57103895258206465198836329947, −6.09482854588561899430923472839, −5.99832161434329141032732583940, −4.87760095706776241965692070574, −4.83817962781524391786500846781, −4.33147484644671132179144222503, −3.96194649889300253224389286726, −3.41292940185586984061180216922, −2.85372106253460268189300561756, −2.81164589120574202804379175461, −1.94220370965866716469868347087, −1.33452028302080270852116357753, −0.62346580820178742493032848749, 0.62346580820178742493032848749, 1.33452028302080270852116357753, 1.94220370965866716469868347087, 2.81164589120574202804379175461, 2.85372106253460268189300561756, 3.41292940185586984061180216922, 3.96194649889300253224389286726, 4.33147484644671132179144222503, 4.83817962781524391786500846781, 4.87760095706776241965692070574, 5.99832161434329141032732583940, 6.09482854588561899430923472839, 6.57103895258206465198836329947, 7.19099618254400368447274970134, 7.30006072679712949741046823488

Graph of the $Z$-function along the critical line