Properties

Degree $1$
Conductor $99$
Sign $0.342 - 0.939i$
Motivic weight $0$
Primitive yes
Self-dual no
Analytic rank $0$

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.5 − 0.866i)2-s + (−0.5 + 0.866i)4-s + (0.5 − 0.866i)5-s + (0.5 + 0.866i)7-s + 8-s − 10-s + (0.5 − 0.866i)13-s + (0.5 − 0.866i)14-s + (−0.5 − 0.866i)16-s + 17-s − 19-s + (0.5 + 0.866i)20-s + (0.5 − 0.866i)23-s + (−0.5 − 0.866i)25-s − 26-s + ⋯
L(s,χ)  = 1  + (−0.5 − 0.866i)2-s + (−0.5 + 0.866i)4-s + (0.5 − 0.866i)5-s + (0.5 + 0.866i)7-s + 8-s − 10-s + (0.5 − 0.866i)13-s + (0.5 − 0.866i)14-s + (−0.5 − 0.866i)16-s + 17-s − 19-s + (0.5 + 0.866i)20-s + (0.5 − 0.866i)23-s + (−0.5 − 0.866i)25-s − 26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.342 - 0.939i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 99 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.342 - 0.939i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(99\)    =    \(3^{2} \cdot 11\)
Sign: $0.342 - 0.939i$
Motivic weight: \(0\)
Character: $\chi_{99} (65, \cdot )$
Sato-Tate group: $\mu(6)$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 99,\ (0:\ ),\ 0.342 - 0.939i)\)

Particular Values

\(L(\chi,\frac{1}{2})\) \(\approx\) \(0.7114354947 - 0.4981524963i\)
\(L(\frac12,\chi)\) \(\approx\) \(0.7114354947 - 0.4981524963i\)
\(L(\chi,1)\) \(\approx\) \(0.8148834573 - 0.3814039884i\)
\(L(1,\chi)\) \(\approx\) \(0.8148834573 - 0.3814039884i\)

Euler product

   \(L(\chi,s) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)
   \(L(s,\chi) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−30.08423753099817190459794218465, −29.16827450804960318898788345848, −27.791300876198571010103663694826, −26.951541774435975137458661586228, −25.94019375437309691523494929062, −25.375164895319315797756007839848, −23.80858452583650324793712186753, −23.324103241242882074824831931637, −21.980887244633145961593449592265, −20.741775419317828356909066069162, −19.22351385890523347352222963149, −18.43922061588955605721425008512, −17.31338615090604738905826128760, −16.57764293398832160408901157153, −15.05452437546675296996801965152, −14.259151237161110063542761727134, −13.372944431725085989610424991478, −11.18824795574279542473790244499, −10.32101910268802337168169348222, −9.131013638035364790050205070407, −7.65792373074251517264811384482, −6.78128709607474239997558543134, −5.55127006670665499231414022906, −3.93261266859087398981281365932, −1.66111610522805616379320785197, 1.33431798093472058628095084409, 2.739500164748515075765218909709, 4.515034346670144754860877074409, 5.79390385693861197079072681815, 8.0148494082748976407028715759, 8.77847635966066878569064458651, 9.91486224309373574533049786584, 11.16098236568774588777796745337, 12.4267763582876905253253656489, 13.06437268624552902308022436243, 14.60809393450394363624237537361, 16.198978451997647766003481949269, 17.27248211087698777830560527031, 18.17851690481460124758534684615, 19.203996613214099341653821731530, 20.56577672808417917119819381912, 21.09041401137618106342581400656, 22.09924838819708722341315960882, 23.45096898482929298350645799793, 25.00060652514239518004593500373, 25.50520659460191880615914495354, 27.075255588305057313792802637180, 28.01032921274703323478547818296, 28.511004547828461118238724135768, 29.73311026503316888645237521567

Graph of the $Z$-function along the critical line