Properties

Degree $1$
Conductor $97$
Sign $0.112 - 0.993i$
Motivic weight $0$
Primitive yes
Self-dual no
Analytic rank $0$

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.923 − 0.382i)2-s + (0.382 − 0.923i)3-s + (0.707 − 0.707i)4-s + (0.980 − 0.195i)5-s i·6-s + (0.980 + 0.195i)7-s + (0.382 − 0.923i)8-s + (−0.707 − 0.707i)9-s + (0.831 − 0.555i)10-s + (−0.382 + 0.923i)11-s + (−0.382 − 0.923i)12-s + (0.195 + 0.980i)13-s + (0.980 − 0.195i)14-s + (0.195 − 0.980i)15-s i·16-s + (0.195 + 0.980i)17-s + ⋯
L(s,χ)  = 1  + (0.923 − 0.382i)2-s + (0.382 − 0.923i)3-s + (0.707 − 0.707i)4-s + (0.980 − 0.195i)5-s i·6-s + (0.980 + 0.195i)7-s + (0.382 − 0.923i)8-s + (−0.707 − 0.707i)9-s + (0.831 − 0.555i)10-s + (−0.382 + 0.923i)11-s + (−0.382 − 0.923i)12-s + (0.195 + 0.980i)13-s + (0.980 − 0.195i)14-s + (0.195 − 0.980i)15-s i·16-s + (0.195 + 0.980i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 97 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (0.112 - 0.993i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 97 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (0.112 - 0.993i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(97\)
Sign: $0.112 - 0.993i$
Motivic weight: \(0\)
Character: $\chi_{97} (52, \cdot )$
Sato-Tate group: $\mu(32)$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 97,\ (1:\ ),\ 0.112 - 0.993i)\)

Particular Values

\(L(\chi,\frac{1}{2})\) \(\approx\) \(2.980835797 - 2.661750863i\)
\(L(\frac12,\chi)\) \(\approx\) \(2.980835797 - 2.661750863i\)
\(L(\chi,1)\) \(\approx\) \(2.106063090 - 1.193751533i\)
\(L(1,\chi)\) \(\approx\) \(2.106063090 - 1.193751533i\)

Euler product

   \(L(\chi,s) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)
   \(L(s,\chi) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−30.13546605359060230826593640365, −29.44272876589120637000904057379, −27.848098736154156122873537047893, −26.76546496153567452798606789492, −25.728838325946029941658539433477, −24.97596426370069818965361663467, −23.82725266610040045942438695297, −22.50860796498942118582350631460, −21.58733717266181805599573515680, −20.99028765320205735009089299125, −20.08568137383058411081620618946, −18.07640137550021440817497167905, −16.96758633431920990412417466148, −15.93772332154581156788348839561, −14.752655357846972803644228485364, −14.05440909876664303800880468441, −13.11470849622339620981464100119, −11.25029995669998960498459386118, −10.491679215875468917244859305689, −8.81913017478918558840266366244, −7.64199752504461282623580195772, −5.77589563200868465432660290663, −5.07440676559678244680498158760, −3.56037114603839835822668426306, −2.285785229023347035260081532376, 1.70529206117758640916970959428, 2.17924111868267550516856221321, 4.2558037470489967281145463979, 5.68560076878287495975150265142, 6.72298092759049698915138994258, 8.232727056878134552391175683440, 9.771067050378553558055565209238, 11.20859610866081099909515406635, 12.43825703672123761913289390480, 13.19794453493343971934356759371, 14.34627535211527155049197063022, 14.90997159359676214306334502883, 16.88891154209956414512460616350, 18.065942260300867697018241868580, 19.041777871732185850312000187025, 20.45747824376785486386842741738, 21.01394227165092313766946576802, 22.13546427381257977352021473602, 23.67510685170426465632675081577, 24.089826968182005202662322486264, 25.259880608169779543952618609112, 25.964565074858696217375703273944, 28.10560767780696410921400236729, 28.761417419429080496258097062757, 29.91268743994250901329811206128

Graph of the $Z$-function along the critical line