Properties

Degree 1
Conductor 97
Sign $-0.207 + 0.978i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  − 2-s − 3-s + 4-s + i·5-s + 6-s i·7-s − 8-s + 9-s i·10-s − 11-s − 12-s + i·13-s + i·14-s i·15-s + 16-s + i·17-s + ⋯
L(s,χ)  = 1  − 2-s − 3-s + 4-s + i·5-s + 6-s i·7-s − 8-s + 9-s i·10-s − 11-s − 12-s + i·13-s + i·14-s i·15-s + 16-s + i·17-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(\chi,s)=\mathstrut & 97 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (-0.207 + 0.978i)\, \Lambda(\overline{\chi},1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s,\chi)=\mathstrut & 97 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (-0.207 + 0.978i)\, \Lambda(1-s,\overline{\chi}) \end{aligned} \]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(97\)
\( \varepsilon \)  =  $-0.207 + 0.978i$
motivic weight  =  \(0\)
character  :  $\chi_{97} (22, \cdot )$
Sato-Tate  :  $\mu(4)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 97,\ (0:\ ),\ -0.207 + 0.978i)$
$L(\chi,\frac{1}{2})$  $\approx$  $0.2195118702 + 0.2709838852i$
$L(\frac12,\chi)$  $\approx$  $0.2195118702 + 0.2709838852i$
$L(\chi,1)$  $\approx$  0.4389419288 + 0.1368795992i
$L(1,\chi)$  $\approx$  0.4389419288 + 0.1368795992i

Euler product

\[\begin{aligned} L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]
\[\begin{aligned} L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−29.19639614232536785519507590907, −28.64218081126164029918950649374, −27.88600270816115195863810751233, −27.0956741314190079725162405451, −25.58381697602523909314146476636, −24.59782078740071861749578257500, −23.891494176626831388615122415857, −22.40790994942075057956329718740, −21.15469955831986685258645842823, −20.34482598142103982359117776175, −18.822271716536776996172143150111, −18.01228598666779850131918941853, −17.12842678425865073792955559960, −15.90902989444569432032956259251, −15.50231464188291418156173209057, −12.96425365199509138847810494123, −12.14445181807835135593646885275, −11.05776802435381329264328325408, −9.84040681941754960017621727161, −8.70967129756331932873721107279, −7.491983993131464172499974983789, −5.89231965169836041380711111927, −5.022159286447815666668939850, −2.45044595969309393949711640008, −0.54941516288487583237355999153, 1.72473267424681441337384180171, 3.73864225832041735256654048605, 5.80465014053441773584730361982, 6.94474657490022917005543743567, 7.7344714553961445615109965343, 9.7447273521408879814251311476, 10.66717335383177216474695952409, 11.21503131695548155823517201909, 12.68949462074814405605998111028, 14.386373554831793385303144665633, 15.77293485108482160268282807993, 16.69051075582370003037072195006, 17.66911429253218547013940794759, 18.52794653564330460394338017565, 19.43182329883066332122445842427, 20.95180207491081621870788410515, 21.88282647600143460534225258107, 23.44032075178551912016186742934, 23.805180486675836008473493099988, 25.57610105101270424110820374080, 26.50985229028967280972834013191, 27.133945159594020552310740058144, 28.352831959863692199237611531116, 29.33841813397548808193969620874, 29.841459466460202099639741131620

Graph of the $Z$-function along the critical line