Properties

Degree 1
Conductor 89
Sign $-0.774 + 0.632i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + 2-s + (−0.707 + 0.707i)3-s + 4-s + i·5-s + (−0.707 + 0.707i)6-s + (−0.707 + 0.707i)7-s + 8-s i·9-s + i·10-s − 11-s + (−0.707 + 0.707i)12-s + (−0.707 − 0.707i)13-s + (−0.707 + 0.707i)14-s + (−0.707 − 0.707i)15-s + 16-s + i·17-s + ⋯
L(s,χ)  = 1  + 2-s + (−0.707 + 0.707i)3-s + 4-s + i·5-s + (−0.707 + 0.707i)6-s + (−0.707 + 0.707i)7-s + 8-s i·9-s + i·10-s − 11-s + (−0.707 + 0.707i)12-s + (−0.707 − 0.707i)13-s + (−0.707 + 0.707i)14-s + (−0.707 − 0.707i)15-s + 16-s + i·17-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(\chi,s)=\mathstrut & 89 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (-0.774 + 0.632i)\, \Lambda(\overline{\chi},1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s,\chi)=\mathstrut & 89 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (-0.774 + 0.632i)\, \Lambda(1-s,\overline{\chi}) \end{aligned} \]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(89\)
\( \varepsilon \)  =  $-0.774 + 0.632i$
motivic weight  =  \(0\)
character  :  $\chi_{89} (12, \cdot )$
Sato-Tate  :  $\mu(8)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 89,\ (1:\ ),\ -0.774 + 0.632i)$
$L(\chi,\frac{1}{2})$  $\approx$  $0.5955972051 + 1.671499302i$
$L(\frac12,\chi)$  $\approx$  $0.5955972051 + 1.671499302i$
$L(\chi,1)$  $\approx$  1.126762730 + 0.7259528613i
$L(1,\chi)$  $\approx$  1.126762730 + 0.7259528613i

Euler product

\[\begin{aligned} L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]
\[\begin{aligned} L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−29.73151999780178785327585340449, −28.93342120320627345486479566702, −28.443554183327047718244425543326, −26.55450243827309138767237055109, −25.1526218148312949257058362425, −24.239459335275582616108830310, −23.54587931138767101959353796897, −22.66223058515666035055420267464, −21.4946315902631723773759320414, −20.24542559502058536222084048138, −19.41334311297190501771228525804, −17.78198327021965804670571877060, −16.35954918986728922797641714030, −16.12119108530953431456553573281, −14.00888330562627989287629773656, −13.16588905840749640983513787785, −12.38293251777175411228718083223, −11.32486975490471563128176354229, −9.88637123681954282412508679219, −7.753982709308875302145281708936, −6.77198234390086034013717762006, −5.3972658490532336430220092647, −4.4657639521085657640196417002, −2.44749765130809041281572245056, −0.61392906640253287262342926104, 2.650535968879778384964262607766, 3.73152964852854731689707778440, 5.438848356626886783148091333935, 6.109975870944288042290530076233, 7.57338916025596646220236198920, 9.92689923884622319713541887803, 10.6691361446367162011331220194, 11.92402760394258602670415796100, 12.87690106608174210081842062167, 14.49403645743828877911236005808, 15.41079439945731032294173270899, 16.07358681685085131063220659475, 17.59164815734038043404599782193, 18.890911023683231954696613727250, 20.28700890638209475272824894272, 21.65476531398380170049455872454, 22.11579648013299626554688751696, 22.97597506831734584524673846775, 23.940070889659489007198535697564, 25.50225169111828283720621197513, 26.26934227638579995582732974631, 27.65249441926829655503521206252, 28.99116600991235764202702596877, 29.42656211202813178127388081788, 30.84198354500194734208997274627

Graph of the $Z$-function along the critical line