Dirichlet series
L(χ,s) = 1 | + (−0.974 − 0.222i)2-s + (0.900 + 0.433i)4-s + (−0.222 + 0.974i)5-s + (−0.900 + 0.433i)7-s + (−0.781 − 0.623i)8-s + (0.433 − 0.900i)10-s + (−0.781 + 0.623i)11-s + (−0.623 − 0.781i)13-s + (0.974 − 0.222i)14-s + (0.623 + 0.781i)16-s + i·17-s + (−0.433 + 0.900i)19-s + (−0.623 + 0.781i)20-s + (0.900 − 0.433i)22-s + (0.222 + 0.974i)23-s + ⋯ |
L(s,χ) = 1 | + (−0.974 − 0.222i)2-s + (0.900 + 0.433i)4-s + (−0.222 + 0.974i)5-s + (−0.900 + 0.433i)7-s + (−0.781 − 0.623i)8-s + (0.433 − 0.900i)10-s + (−0.781 + 0.623i)11-s + (−0.623 − 0.781i)13-s + (0.974 − 0.222i)14-s + (0.623 + 0.781i)16-s + i·17-s + (−0.433 + 0.900i)19-s + (−0.623 + 0.781i)20-s + (0.900 − 0.433i)22-s + (0.222 + 0.974i)23-s + ⋯ |
Functional equation
\[\begin{aligned}
\Lambda(\chi,s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr
=\mathstrut & (-0.347 + 0.937i)\, \Lambda(\overline{\chi},1-s)
\end{aligned}
\]
\[\begin{aligned}
\Lambda(s,\chi)=\mathstrut & 87 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr
=\mathstrut & (-0.347 + 0.937i)\, \Lambda(1-s,\overline{\chi})
\end{aligned}
\]
Invariants
\( d \) | = | \(1\) |
\( N \) | = | \(87\) = \(3 \cdot 29\) |
\( \varepsilon \) | = | $-0.347 + 0.937i$ |
motivic weight | = | \(0\) |
character | : | $\chi_{87} (2, \cdot )$ |
Sato-Tate | : | $\mu(28)$ |
primitive | : | yes |
self-dual | : | no |
analytic rank | = | 0 |
Selberg data | = | $(1,\ 87,\ (0:\ ),\ -0.347 + 0.937i)$ |
$L(\chi,\frac{1}{2})$ | $\approx$ | $0.2256576882 + 0.3241404843i$ |
$L(\frac12,\chi)$ | $\approx$ | $0.2256576882 + 0.3241404843i$ |
$L(\chi,1)$ | $\approx$ | 0.4983785848 + 0.1668469250i |
$L(1,\chi)$ | $\approx$ | 0.4983785848 + 0.1668469250i |
Euler product
\[\begin{aligned}
L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}
\end{aligned}\]
\[\begin{aligned}
L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}
\end{aligned}\]