Dirichlet series
L(χ,s) = 1 | + (−0.781 + 0.623i)2-s + (0.222 − 0.974i)4-s + (0.623 + 0.781i)5-s + (−0.222 − 0.974i)7-s + (0.433 + 0.900i)8-s + (−0.974 − 0.222i)10-s + (0.433 − 0.900i)11-s + (0.900 + 0.433i)13-s + (0.781 + 0.623i)14-s + (−0.900 − 0.433i)16-s + i·17-s + (0.974 + 0.222i)19-s + (0.900 − 0.433i)20-s + (0.222 + 0.974i)22-s + (−0.623 + 0.781i)23-s + ⋯ |
L(s,χ) = 1 | + (−0.781 + 0.623i)2-s + (0.222 − 0.974i)4-s + (0.623 + 0.781i)5-s + (−0.222 − 0.974i)7-s + (0.433 + 0.900i)8-s + (−0.974 − 0.222i)10-s + (0.433 − 0.900i)11-s + (0.900 + 0.433i)13-s + (0.781 + 0.623i)14-s + (−0.900 − 0.433i)16-s + i·17-s + (0.974 + 0.222i)19-s + (0.900 − 0.433i)20-s + (0.222 + 0.974i)22-s + (−0.623 + 0.781i)23-s + ⋯ |
Functional equation
\[\begin{aligned}
\Lambda(\chi,s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr
=\mathstrut & (0.801 + 0.598i)\, \Lambda(\overline{\chi},1-s)
\end{aligned}
\]
\[\begin{aligned}
\Lambda(s,\chi)=\mathstrut & 87 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr
=\mathstrut & (0.801 + 0.598i)\, \Lambda(1-s,\overline{\chi})
\end{aligned}
\]
Invariants
\( d \) | = | \(1\) |
\( N \) | = | \(87\) = \(3 \cdot 29\) |
\( \varepsilon \) | = | $0.801 + 0.598i$ |
motivic weight | = | \(0\) |
character | : | $\chi_{87} (11, \cdot )$ |
Sato-Tate | : | $\mu(28)$ |
primitive | : | yes |
self-dual | : | no |
analytic rank | = | 0 |
Selberg data | = | $(1,\ 87,\ (0:\ ),\ 0.801 + 0.598i)$ |
$L(\chi,\frac{1}{2})$ | $\approx$ | $0.7324454015 + 0.2434028704i$ |
$L(\frac12,\chi)$ | $\approx$ | $0.7324454015 + 0.2434028704i$ |
$L(\chi,1)$ | $\approx$ | 0.7956699705 + 0.2039708339i |
$L(1,\chi)$ | $\approx$ | 0.7956699705 + 0.2039708339i |
Euler product
\[\begin{aligned}
L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}
\end{aligned}\]
\[\begin{aligned}
L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}
\end{aligned}\]