Properties

Degree $1$
Conductor $83$
Sign $0.717 + 0.696i$
Motivic weight $0$
Primitive yes
Self-dual no
Analytic rank $0$

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.264 − 0.964i)2-s + (0.896 + 0.443i)3-s + (−0.859 − 0.511i)4-s + (−0.817 + 0.575i)5-s + (0.665 − 0.746i)6-s + (−0.543 + 0.839i)7-s + (−0.720 + 0.693i)8-s + (0.606 + 0.795i)9-s + (0.338 + 0.941i)10-s + (0.988 + 0.152i)11-s + (−0.543 − 0.839i)12-s + (0.973 + 0.227i)13-s + (0.665 + 0.746i)14-s + (−0.988 + 0.152i)15-s + (0.477 + 0.878i)16-s + (−0.771 + 0.636i)17-s + ⋯
L(s,χ)  = 1  + (0.264 − 0.964i)2-s + (0.896 + 0.443i)3-s + (−0.859 − 0.511i)4-s + (−0.817 + 0.575i)5-s + (0.665 − 0.746i)6-s + (−0.543 + 0.839i)7-s + (−0.720 + 0.693i)8-s + (0.606 + 0.795i)9-s + (0.338 + 0.941i)10-s + (0.988 + 0.152i)11-s + (−0.543 − 0.839i)12-s + (0.973 + 0.227i)13-s + (0.665 + 0.746i)14-s + (−0.988 + 0.152i)15-s + (0.477 + 0.878i)16-s + (−0.771 + 0.636i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 83 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (0.717 + 0.696i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 83 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (0.717 + 0.696i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(83\)
Sign: $0.717 + 0.696i$
Motivic weight: \(0\)
Character: $\chi_{83} (72, \cdot )$
Sato-Tate group: $\mu(82)$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 83,\ (1:\ ),\ 0.717 + 0.696i)\)

Particular Values

\(L(\chi,\frac{1}{2})\) \(\approx\) \(1.595667274 + 0.6474517247i\)
\(L(\frac12,\chi)\) \(\approx\) \(1.595667274 + 0.6474517247i\)
\(L(\chi,1)\) \(\approx\) \(1.259750130 + 6.812072557\times10^{-5}i\)
\(L(1,\chi)\) \(\approx\) \(1.259750130 + 6.812072557\times10^{-5}i\)

Euler product

   \(L(\chi,s) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)
   \(L(s,\chi) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−30.66175863903993855239151279242, −29.92802489961568696642034642884, −28.04987414314212981444184005536, −26.91208459537349704238988782484, −26.12896997845136829028226083338, −25.06832414714613295144920115247, −24.12350247512524014393929936797, −23.379345880921963801925222626113, −22.18393419340668735182583097496, −20.47627165099413779875950617630, −19.726305141144794446912430719947, −18.49009285563662774884346516420, −17.1105615096714840592132294312, −15.98110562349773273077401109088, −15.12080925575182779920028133367, −13.67250136106992769407100665755, −13.18606641394945848195593566837, −11.7205502274000801994056341495, −9.4459541052756703770938148743, −8.524421769970617876759924479303, −7.416017017669388085390513076064, −6.4357284378576562746781694846, −4.32272581495287886849887508848, −3.48838057411678593268803610585, −0.71156283135180305076566938372, 2.01539443166312964080920955799, 3.446286733957844905298117015341, 4.16188497496155349041026979468, 6.23371987980146872136129683893, 8.27876686874903392153557989746, 9.20492135937215362237021161449, 10.44967715561871143366273636727, 11.64032445848766176787931168863, 12.79315716706627952329701376178, 14.17993506822743380672334521541, 15.00708812029135893939908479930, 16.093217156650215462861288077349, 18.24365992727228019804294493274, 19.18079865715138316452309178151, 19.80054185962937820770260314291, 20.97767548817273180436633324863, 22.108932883006824305511989094601, 22.75069727497862423666206002078, 24.27226756699971166930769298258, 25.673946146201363994024036636579, 26.685261751667275498858547735167, 27.670241262370228235018120573871, 28.461174181104155349197642077593, 30.105683592535342143446003668646, 30.75097889529016326378588501964

Graph of the $Z$-function along the critical line