Properties

Degree 1
Conductor 83
Sign $-0.0622 - 0.998i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.409 + 0.912i)2-s + (0.477 − 0.878i)3-s + (−0.665 − 0.746i)4-s + (−0.927 − 0.373i)5-s + (0.606 + 0.795i)6-s + (−0.973 − 0.227i)7-s + (0.953 − 0.301i)8-s + (−0.543 − 0.839i)9-s + (0.720 − 0.693i)10-s + (−0.771 − 0.636i)11-s + (−0.973 + 0.227i)12-s + (−0.859 + 0.511i)13-s + (0.606 − 0.795i)14-s + (−0.771 + 0.636i)15-s + (−0.114 + 0.993i)16-s + (0.0383 − 0.999i)17-s + ⋯
L(s,χ)  = 1  + (−0.409 + 0.912i)2-s + (0.477 − 0.878i)3-s + (−0.665 − 0.746i)4-s + (−0.927 − 0.373i)5-s + (0.606 + 0.795i)6-s + (−0.973 − 0.227i)7-s + (0.953 − 0.301i)8-s + (−0.543 − 0.839i)9-s + (0.720 − 0.693i)10-s + (−0.771 − 0.636i)11-s + (−0.973 + 0.227i)12-s + (−0.859 + 0.511i)13-s + (0.606 − 0.795i)14-s + (−0.771 + 0.636i)15-s + (−0.114 + 0.993i)16-s + (0.0383 − 0.999i)17-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(\chi,s)=\mathstrut & 83 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (-0.0622 - 0.998i)\, \Lambda(\overline{\chi},1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s,\chi)=\mathstrut & 83 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (-0.0622 - 0.998i)\, \Lambda(1-s,\overline{\chi}) \end{aligned} \]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(83\)
\( \varepsilon \)  =  $-0.0622 - 0.998i$
motivic weight  =  \(0\)
character  :  $\chi_{83} (44, \cdot )$
Sato-Tate  :  $\mu(41)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 83,\ (0:\ ),\ -0.0622 - 0.998i)$
$L(\chi,\frac{1}{2})$  $\approx$  $0.3291710390 - 0.3503337239i$
$L(\frac12,\chi)$  $\approx$  $0.3291710390 - 0.3503337239i$
$L(\chi,1)$  $\approx$  0.6165713477 - 0.1309864623i
$L(1,\chi)$  $\approx$  0.6165713477 - 0.1309864623i

Euler product

\[\begin{aligned} L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]
\[\begin{aligned} L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−31.36558600083155264046885980455, −30.16518378156832968623097164854, −28.785074081946505307074327722079, −28.00097237697659178690859714125, −26.85629236128701534463670646801, −26.33969752703448715756854136797, −25.234039125174950817280338246577, −23.092021893545311803678410781672, −22.420069495824724326966668876635, −21.35304752078775371256824525404, −20.09610999001900094938803140764, −19.5413261091668049531160019224, −18.471374747339067845267235191644, −16.87741745415544467445091124036, −15.74359963958257052192309353530, −14.73583789187693529175694183455, −13.06605399563336716595891661245, −12.02033421686590582408576593266, −10.542314529557848998946635710265, −9.92276369192862154417055064105, −8.56027371317455719180917047322, −7.43713599019426979675483993859, −4.93222189825168151357337696673, −3.54727482109897567383254305438, −2.706427602817470695624403791245, 0.56552978071490896469556786557, 3.10739313885499078314372160996, 5.00733919829827347462605726102, 6.72249373061897937190360932475, 7.49296993678078944714193319695, 8.61358676847443866440243633437, 9.72862992277259249330160108603, 11.66966568200991311983763617220, 13.068615170071015359910720091662, 13.9207378218190521546283080710, 15.38187414519511845095034037443, 16.217039318990482105626663966857, 17.42043855877108889316977397149, 18.94297456579837305215839295050, 19.21772962450005230472332443523, 20.43830657009887812821856524185, 22.55368896245864807915289233917, 23.48190238704795056941547416122, 24.28043983116876170230539664056, 25.15258137638110335833275471876, 26.444920269840439228576693506678, 26.90105985927701866430055833641, 28.61192020345484092798085786523, 29.26671200120783723426546147885, 30.99309532811072461628835560808

Graph of the $Z$-function along the critical line