Properties

Degree 1
Conductor 83
Sign $0.996 + 0.0870i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.997 + 0.0765i)2-s + (0.720 − 0.693i)3-s + (0.988 + 0.152i)4-s + (−0.477 + 0.878i)5-s + (0.771 − 0.636i)6-s + (0.817 + 0.575i)7-s + (0.973 + 0.227i)8-s + (0.0383 − 0.999i)9-s + (−0.543 + 0.839i)10-s + (−0.264 + 0.964i)11-s + (0.817 − 0.575i)12-s + (0.927 − 0.373i)13-s + (0.771 + 0.636i)14-s + (0.264 + 0.964i)15-s + (0.953 + 0.301i)16-s + (−0.409 − 0.912i)17-s + ⋯
L(s,χ)  = 1  + (0.997 + 0.0765i)2-s + (0.720 − 0.693i)3-s + (0.988 + 0.152i)4-s + (−0.477 + 0.878i)5-s + (0.771 − 0.636i)6-s + (0.817 + 0.575i)7-s + (0.973 + 0.227i)8-s + (0.0383 − 0.999i)9-s + (−0.543 + 0.839i)10-s + (−0.264 + 0.964i)11-s + (0.817 − 0.575i)12-s + (0.927 − 0.373i)13-s + (0.771 + 0.636i)14-s + (0.264 + 0.964i)15-s + (0.953 + 0.301i)16-s + (−0.409 − 0.912i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 83 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (0.996 + 0.0870i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 83 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (0.996 + 0.0870i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(83\)
\( \varepsilon \)  =  $0.996 + 0.0870i$
motivic weight  =  \(0\)
character  :  $\chi_{83} (2, \cdot )$
Sato-Tate  :  $\mu(82)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 83,\ (1:\ ),\ 0.996 + 0.0870i)$
$L(\chi,\frac{1}{2})$  $\approx$  $3.840202456 + 0.1675559692i$
$L(\frac12,\chi)$  $\approx$  $3.840202456 + 0.1675559692i$
$L(\chi,1)$  $\approx$  2.402596793 + 0.03088052139i
$L(1,\chi)$  $\approx$  2.402596793 + 0.03088052139i

Euler product

\[\begin{aligned}L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]
\[\begin{aligned}L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−30.960832068645450248619825885, −29.88661466610117692279259134974, −28.43906074396113631786099436638, −27.47824065840633142711065359065, −26.28711838992642265472552249205, −25.063128234169449363439336000814, −24.00299347656526887290569324708, −23.32653888634109556476216247891, −21.52948747188468882126295275813, −21.1133967163119807148149512470, −20.105663735101229876829592142859, −19.21382607215245012665361363030, −16.92583815253885418505608103120, −16.03497496854141299589038487093, −15.06101084757489404834863846984, −13.8802912389769602428982584627, −13.09297847549956359376559948403, −11.43553643588415785132978022880, −10.590636301812591390706306101036, −8.685301247865897121186546402346, −7.77903007110180909047682281087, −5.726124835233169649076415367891, −4.35971598322255371828364683647, −3.6817176786792493706907652804, −1.686077153872408123365798856389, 2.00487831976325214828280790087, 3.07490662899518749421406074060, 4.61164435046516979853707518571, 6.404388873438888044030701776253, 7.37810565992567042494377555411, 8.51659767376576744628993694637, 10.68351595133405136921964936524, 11.82364748488900955458342145059, 12.86106802407405760645092693546, 14.12303055799551249629385370049, 14.93401528739742776513240778298, 15.68034408714217751321317805728, 17.82035264933825204981406178457, 18.68549529336190325222038895110, 20.07444165787092707513977073081, 20.82106673049098023916676710375, 22.17618887558518574199992888643, 23.283071016624047691156336378718, 24.04659931274902019529915819557, 25.31490053747021438412356273708, 25.8486255989362975813838825300, 27.37981540209007490352593717403, 28.872782544128616011636326041917, 30.16369500514851202620250065483, 30.79712527215908178644607836951

Graph of the $Z$-function along the critical line