Properties

Degree 1
Conductor $ 2^{5} \cdot 5^{2} $
Sign $-0.701 - 0.712i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.987 − 0.156i)3-s i·7-s + (0.951 − 0.309i)9-s + (−0.891 + 0.453i)11-s + (−0.891 − 0.453i)13-s + (0.809 − 0.587i)17-s + (−0.156 + 0.987i)19-s + (−0.156 − 0.987i)21-s + (0.951 + 0.309i)23-s + (0.891 − 0.453i)27-s + (−0.987 + 0.156i)29-s + (0.809 − 0.587i)31-s + (−0.809 + 0.587i)33-s + (0.453 − 0.891i)37-s + (−0.951 − 0.309i)39-s + ⋯
L(s,χ)  = 1  + (0.987 − 0.156i)3-s i·7-s + (0.951 − 0.309i)9-s + (−0.891 + 0.453i)11-s + (−0.891 − 0.453i)13-s + (0.809 − 0.587i)17-s + (−0.156 + 0.987i)19-s + (−0.156 − 0.987i)21-s + (0.951 + 0.309i)23-s + (0.891 − 0.453i)27-s + (−0.987 + 0.156i)29-s + (0.809 − 0.587i)31-s + (−0.809 + 0.587i)33-s + (0.453 − 0.891i)37-s + (−0.951 − 0.309i)39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (-0.701 - 0.712i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 800 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (-0.701 - 0.712i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(800\)    =    \(2^{5} \cdot 5^{2}\)
\( \varepsilon \)  =  $-0.701 - 0.712i$
motivic weight  =  \(0\)
character  :  $\chi_{800} (11, \cdot )$
Sato-Tate  :  $\mu(40)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 800,\ (1:\ ),\ -0.701 - 0.712i)$
$L(\chi,\frac{1}{2})$  $\approx$  $0.7464921487 - 1.782362048i$
$L(\frac12,\chi)$  $\approx$  $0.7464921487 - 1.782362048i$
$L(\chi,1)$  $\approx$  1.251721173 - 0.3906640038i
$L(1,\chi)$  $\approx$  1.251721173 - 0.3906640038i

Euler product

\[\begin{aligned}L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]
\[\begin{aligned}L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−22.016258120795444167140984642483, −21.46751452117813260303329845661, −20.94616900646999740000029460449, −19.893766035212707925974538934170, −19.00317521418460136436086422287, −18.77612642854995034336865608558, −17.63479374264269175642768556756, −16.55706709607317501523872630236, −15.73483306784855604904797998211, −14.957914225035726504902972622610, −14.49360406780929330007576877567, −13.29914027986294812763645845187, −12.79208708831308737438528819643, −11.76478406461653715802321910840, −10.72271605842698516211375559969, −9.74867781262748840954337665578, −9.06230137621355039890378272584, −8.24024029374186456984864302414, −7.51021228231663783284634988289, −6.38385948937156274403408769794, −5.2127879981782059167985739221, −4.46654937974332388851299970929, −2.97871683959657227693375962225, −2.67611349292471126551005503324, −1.41356235057810443650605030398, 0.3486392522875184911114722065, 1.5909330467461724158192634114, 2.682621791496765050965717762995, 3.53099269824390028510208655878, 4.52451767944025455176686903264, 5.50545909429877054449918631027, 6.999319174043168925879805854015, 7.57287360924768369769708504877, 8.13611350675591768922798715979, 9.49795354154156103043638484270, 9.98737684315222620581721796619, 10.828216333373694665099449397288, 12.16659662067966964794637674584, 12.95103797914240610727171438477, 13.57976739993667136864996690732, 14.54883133011570554551787782475, 15.013551494295731244995503795098, 16.08732993893453736137212961689, 16.90428615956657366559063183182, 17.83891607423425887656210576607, 18.72241892870540842740192294937, 19.40253970345504701389335821968, 20.31644761865825044303693047151, 20.74376697910249491355273533260, 21.4778161484365581396711097103

Graph of the $Z$-function along the critical line