Properties

Degree 1
Conductor $ 3 \cdot 5^{2} $
Sign $0.0627 + 0.998i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.809 + 0.587i)2-s + (0.309 + 0.951i)4-s + 7-s + (−0.309 + 0.951i)8-s + (0.809 + 0.587i)11-s + (−0.809 + 0.587i)13-s + (0.809 + 0.587i)14-s + (−0.809 + 0.587i)16-s + (−0.309 + 0.951i)17-s + (0.309 − 0.951i)19-s + (0.309 + 0.951i)22-s + (0.809 + 0.587i)23-s − 26-s + (0.309 + 0.951i)28-s + (−0.309 − 0.951i)29-s + ⋯
L(s,χ)  = 1  + (0.809 + 0.587i)2-s + (0.309 + 0.951i)4-s + 7-s + (−0.309 + 0.951i)8-s + (0.809 + 0.587i)11-s + (−0.809 + 0.587i)13-s + (0.809 + 0.587i)14-s + (−0.809 + 0.587i)16-s + (−0.309 + 0.951i)17-s + (0.309 − 0.951i)19-s + (0.309 + 0.951i)22-s + (0.809 + 0.587i)23-s − 26-s + (0.309 + 0.951i)28-s + (−0.309 − 0.951i)29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (0.0627 + 0.998i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 75 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (0.0627 + 0.998i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(75\)    =    \(3 \cdot 5^{2}\)
\( \varepsilon \)  =  $0.0627 + 0.998i$
motivic weight  =  \(0\)
character  :  $\chi_{75} (71, \cdot )$
Sato-Tate  :  $\mu(10)$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((1,\ 75,\ (1:\ ),\ 0.0627 + 0.998i)\)
\(L(\chi,\frac{1}{2})\)  \(\approx\)  \(1.996325396 + 1.874674329i\)
\(L(\frac12,\chi)\)  \(\approx\)  \(1.996325396 + 1.874674329i\)
\(L(\chi,1)\)  \(\approx\)  \(1.599498581 + 0.8509635120i\)
\(L(1,\chi)\)  \(\approx\)  \(1.599498581 + 0.8509635120i\)

Euler product

\[\begin{aligned}L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]
\[\begin{aligned}L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−30.9048994074797685904766924663, −29.851579676549375571526185416531, −29.09559872130748778159302035445, −27.617920927504250744600142774683, −27.02650024561109229652436306506, −24.85197183130739087321676082681, −24.47436808857309265195795491656, −23.04539105673167620198155809541, −22.12877546176181087177962982313, −21.034937609875021059934452686579, −20.12840167660519465458366930890, −18.95937152388132443099241894952, −17.684059134375126980962391716934, −16.15803527640049457507775759110, −14.66895643545789445313713529650, −14.10677337944532839483216578679, −12.57542993808367665196050355637, −11.55988477516419032240285932934, −10.52051037661170176605383083573, −9.00623954568903237201045854370, −7.23736760192751313395663446946, −5.61368832940562165479106766333, −4.48361606531549343966401613361, −2.9005079014347485033513058392, −1.21036398261233875901702064928, 2.10377499584930417717223421599, 4.064036657239392203646570385655, 5.09561414300904787840868760393, 6.66963920491949206928636971002, 7.78007233239186372638372240647, 9.19622246362116727541383888932, 11.207544382510861583864686964773, 12.1322022744080272692302678570, 13.50811124040876612838263776882, 14.64781809035259079548577537167, 15.3624046098181432318689526360, 17.06239348929827036215311424873, 17.542358468276466534607929048298, 19.43583435718875475742972372783, 20.74254461874352251304228532071, 21.71479154722156042997723435612, 22.68694513485175305701640152675, 24.03656851830482884377707058528, 24.54458222050116063668279311626, 25.8537278793337975229734604197, 26.88312179186039641393422930765, 28.11057268576252833602800149405, 29.62189920563254641005971046024, 30.61680949277836487430652570077, 31.29409625511506803948156990957

Graph of the $Z$-function along the critical line