Properties

Degree 1
Conductor $ 17 \cdot 43 $
Sign $-0.998 + 0.0514i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.993 + 0.111i)2-s + (0.875 + 0.483i)3-s + (0.974 − 0.222i)4-s + (−0.0560 + 0.998i)5-s + (−0.923 − 0.382i)6-s + (−0.382 + 0.923i)7-s + (−0.943 + 0.330i)8-s + (0.532 + 0.846i)9-s + (−0.0560 − 0.998i)10-s + (−0.578 + 0.815i)11-s + (0.960 + 0.276i)12-s + (−0.433 + 0.900i)13-s + (0.276 − 0.960i)14-s + (−0.532 + 0.846i)15-s + (0.900 − 0.433i)16-s + ⋯
L(s,χ)  = 1  + (−0.993 + 0.111i)2-s + (0.875 + 0.483i)3-s + (0.974 − 0.222i)4-s + (−0.0560 + 0.998i)5-s + (−0.923 − 0.382i)6-s + (−0.382 + 0.923i)7-s + (−0.943 + 0.330i)8-s + (0.532 + 0.846i)9-s + (−0.0560 − 0.998i)10-s + (−0.578 + 0.815i)11-s + (0.960 + 0.276i)12-s + (−0.433 + 0.900i)13-s + (0.276 − 0.960i)14-s + (−0.532 + 0.846i)15-s + (0.900 − 0.433i)16-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 731 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (-0.998 + 0.0514i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 731 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (-0.998 + 0.0514i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(731\)    =    \(17 \cdot 43\)
\( \varepsilon \)  =  $-0.998 + 0.0514i$
motivic weight  =  \(0\)
character  :  $\chi_{731} (45, \cdot )$
Sato-Tate  :  $\mu(112)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 731,\ (0:\ ),\ -0.998 + 0.0514i)$
$L(\chi,\frac{1}{2})$  $\approx$  $0.02399194084 + 0.9312905357i$
$L(\frac12,\chi)$  $\approx$  $0.02399194084 + 0.9312905357i$
$L(\chi,1)$  $\approx$  0.6263880865 + 0.5297898860i
$L(1,\chi)$  $\approx$  0.6263880865 + 0.5297898860i

Euler product

\[\begin{aligned}L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]
\[\begin{aligned}L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−21.65969231725314095488471673873, −20.98970175420193653722975022393, −20.227611394622918801140043353403, −19.58000134290866518037972036594, −19.2638958791987952274241304146, −17.97413650063031123817233628908, −17.41443171329026580669985688698, −16.49045289135662089568463007069, −15.75527901839050151316447903870, −14.95966592351055920792765115610, −13.57333731191000363649953216496, −13.10308965531965250194169749066, −12.282110268985786843694949533782, −11.15820878928833064358765590721, −10.141815352128278161250033907052, −9.45366249442877026591563004394, −8.47203909153497556972925230448, −8.01094349546005336024715855740, −7.15012142643556707891129300871, −6.191089257192639032256609938817, −4.79185033001784460881875072924, −3.41061830179124654686430224368, −2.721012130540083855165424551010, −1.32555329771827985374125579791, −0.548753419052283207259562431279, 2.10059766785163214762843549534, 2.40763776781300314105554908872, 3.45938736303245881728220114279, 4.81232325628935933641571056163, 6.18791734867258639870226627076, 6.97617611839716982737780571238, 7.87700500439057238057562355813, 8.65986788336019695308576635407, 9.64871790033787151317725950608, 10.05833939107209812306098947770, 10.975408244743951418837095525133, 11.98594155947291094101049776505, 12.95750908871926419203946925823, 14.53576833333423571177285203878, 14.684263045548879253565826898536, 15.63392389608529892520278128107, 16.200425995930574819418981039113, 17.31419793628301958783048149056, 18.37577302795725538791911596008, 18.90950432686075242079610704375, 19.359771511883466692596247803525, 20.42646378842615765451899525235, 21.17053020157896983177957133697, 21.86520312995048484741731729731, 22.82241707780314584776975168426

Graph of the $Z$-function along the critical line