Properties

Label 1-712-712.355-r1-0-0
Degree $1$
Conductor $712$
Sign $1$
Analytic cond. $76.5150$
Root an. cond. $76.5150$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 7-s + 9-s + 11-s + 13-s + 15-s + 17-s − 19-s − 21-s + 23-s + 25-s − 27-s + 29-s + 31-s − 33-s − 35-s + 37-s − 39-s − 41-s − 43-s − 45-s − 47-s + 49-s − 51-s − 53-s − 55-s + ⋯
L(s)  = 1  − 3-s − 5-s + 7-s + 9-s + 11-s + 13-s + 15-s + 17-s − 19-s − 21-s + 23-s + 25-s − 27-s + 29-s + 31-s − 33-s − 35-s + 37-s − 39-s − 41-s − 43-s − 45-s − 47-s + 49-s − 51-s − 53-s − 55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 712 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 712 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(712\)    =    \(2^{3} \cdot 89\)
Sign: $1$
Analytic conductor: \(76.5150\)
Root analytic conductor: \(76.5150\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{712} (355, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((1,\ 712,\ (1:\ ),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.727148308\)
\(L(\frac12)\) \(\approx\) \(1.727148308\)
\(L(1)\) \(\approx\) \(0.9418892991\)
\(L(1)\) \(\approx\) \(0.9418892991\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
89 \( 1 \)
good3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 + T \)
11 \( 1 + T \)
13 \( 1 + T \)
17 \( 1 + T \)
19 \( 1 - T \)
23 \( 1 + T \)
29 \( 1 + T \)
31 \( 1 + T \)
37 \( 1 + T \)
41 \( 1 - T \)
43 \( 1 - T \)
47 \( 1 - T \)
53 \( 1 - T \)
59 \( 1 - T \)
61 \( 1 + T \)
67 \( 1 + T \)
71 \( 1 - T \)
73 \( 1 + T \)
79 \( 1 - T \)
83 \( 1 - T \)
97 \( 1 + T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−22.610874548054419191264499863914, −21.50738234579961549291857967606, −20.99889652466775821736655651719, −19.92793133198550039926128179847, −18.94047345144956901523257833205, −18.41810115158636974131173261087, −17.30125442201409338791967032136, −16.835286583002438858020966677012, −15.89211984219173031767042699943, −15.09010365192380803558557767636, −14.33118803614086508971339634332, −13.08821813283749402423197158930, −12.14191891713250473721189327685, −11.51309437725528390978570052866, −11.00670497936107086428368722409, −10.03353215815746373782011902884, −8.65601858807521944726946170250, −8.01368067132183598581812190009, −6.90028697971980306601640290607, −6.189021115830070679898960997174, −4.93635119287207170832428098728, −4.33595491128364856268326564091, −3.339331236122840645934133346279, −1.49893015838926699713475026924, −0.78240996382308683695777159193, 0.78240996382308683695777159193, 1.49893015838926699713475026924, 3.339331236122840645934133346279, 4.33595491128364856268326564091, 4.93635119287207170832428098728, 6.189021115830070679898960997174, 6.90028697971980306601640290607, 8.01368067132183598581812190009, 8.65601858807521944726946170250, 10.03353215815746373782011902884, 11.00670497936107086428368722409, 11.51309437725528390978570052866, 12.14191891713250473721189327685, 13.08821813283749402423197158930, 14.33118803614086508971339634332, 15.09010365192380803558557767636, 15.89211984219173031767042699943, 16.835286583002438858020966677012, 17.30125442201409338791967032136, 18.41810115158636974131173261087, 18.94047345144956901523257833205, 19.92793133198550039926128179847, 20.99889652466775821736655651719, 21.50738234579961549291857967606, 22.610874548054419191264499863914

Graph of the $Z$-function along the critical line