Properties

Degree $1$
Conductor $709$
Sign $0.839 + 0.543i$
Motivic weight $0$
Primitive yes
Self-dual no
Analytic rank $0$

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.949 + 0.314i)2-s + (−0.0266 − 0.999i)3-s + (0.802 + 0.596i)4-s + (−0.697 + 0.716i)5-s + (0.288 − 0.957i)6-s + (−0.617 − 0.786i)7-s + (0.574 + 0.818i)8-s + (−0.998 + 0.0532i)9-s + (−0.887 + 0.461i)10-s + (0.910 + 0.413i)11-s + (0.574 − 0.818i)12-s + (−0.617 + 0.786i)13-s + (−0.339 − 0.940i)14-s + (0.734 + 0.678i)15-s + (0.288 + 0.957i)16-s + (0.910 − 0.413i)17-s + ⋯
L(s,χ)  = 1  + (0.949 + 0.314i)2-s + (−0.0266 − 0.999i)3-s + (0.802 + 0.596i)4-s + (−0.697 + 0.716i)5-s + (0.288 − 0.957i)6-s + (−0.617 − 0.786i)7-s + (0.574 + 0.818i)8-s + (−0.998 + 0.0532i)9-s + (−0.887 + 0.461i)10-s + (0.910 + 0.413i)11-s + (0.574 − 0.818i)12-s + (−0.617 + 0.786i)13-s + (−0.339 − 0.940i)14-s + (0.734 + 0.678i)15-s + (0.288 + 0.957i)16-s + (0.910 − 0.413i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 709 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.839 + 0.543i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 709 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.839 + 0.543i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(709\)
Sign: $0.839 + 0.543i$
Motivic weight: \(0\)
Character: $\chi_{709} (564, \cdot )$
Sato-Tate group: $\mu(59)$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 709,\ (0:\ ),\ 0.839 + 0.543i)\)

Particular Values

\(L(\chi,\frac{1}{2})\) \(\approx\) \(2.074641790 + 0.6128511360i\)
\(L(\frac12,\chi)\) \(\approx\) \(2.074641790 + 0.6128511360i\)
\(L(\chi,1)\) \(\approx\) \(1.605381667 + 0.1639329756i\)
\(L(1,\chi)\) \(\approx\) \(1.605381667 + 0.1639329756i\)

Euler product

   \(L(\chi,s) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)
   \(L(s,\chi) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−22.39354275828783756414995714089, −21.90440869669172408662875021575, −20.93398743643493608130729764578, −20.344212779450799340782067883399, −19.43224586777019843404764932031, −19.06256939588185765616352272104, −17.19427294525926864382770610342, −16.5986791455894620032504199423, −15.65988130709151530047332982214, −15.2490129007138374914818520126, −14.49836681632203867918327422723, −13.32870836520070987367625709409, −12.46373009051789851983409390388, −11.76001092508892309212889060137, −11.13453721645361429471876030922, −9.90988423857933954197389952002, −9.29121271808797383208252059051, −8.2693827458775487294223437455, −6.98410309631077732052150293098, −5.661443907761670157946175190276, −5.29651758873928073818828368772, −4.18232514373371044067839735594, −3.42984652520878146023903270795, −2.659474405279113421320169903898, −0.859093689641904115696438987617, 1.28349879778953900334049280805, 2.63311608792695711252515934010, 3.47516420843580865311945486956, 4.30451075205298911722783521559, 5.65676014123393250781791485982, 6.63132202530064801505312109644, 7.29919020982879955263062570155, 7.54304027221664531807160978246, 9.03475240543914429085614504562, 10.38844894027283545221300123098, 11.40569294068587906991060215825, 12.09495141672822384014496378386, 12.6235199528165000353942552700, 13.83337585034018282140948095889, 14.281196506007497650334580600449, 14.92852555733705771186407213795, 16.247473436264055747941890629071, 16.7680817662404955856625238083, 17.65803342851539622754552348260, 18.908478210781385770902229928084, 19.43893066667854042300371794507, 20.13540603160800702344416880151, 21.10033765198080974055419071566, 22.45354047011146460964331939337, 22.77019634447417781825885612662

Graph of the $Z$-function along the critical line