Properties

Degree $1$
Conductor $709$
Sign $0.813 - 0.581i$
Motivic weight $0$
Primitive yes
Self-dual no
Analytic rank $0$

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.132 − 0.991i)2-s + (−0.617 + 0.786i)3-s + (−0.964 + 0.263i)4-s + (−0.437 − 0.899i)5-s + (0.861 + 0.507i)6-s + (0.802 − 0.596i)7-s + (0.388 + 0.921i)8-s + (−0.237 − 0.971i)9-s + (−0.833 + 0.552i)10-s + (−0.339 + 0.940i)11-s + (0.388 − 0.921i)12-s + (0.802 + 0.596i)13-s + (−0.697 − 0.716i)14-s + (0.977 + 0.211i)15-s + (0.861 − 0.507i)16-s + (−0.339 − 0.940i)17-s + ⋯
L(s,χ)  = 1  + (−0.132 − 0.991i)2-s + (−0.617 + 0.786i)3-s + (−0.964 + 0.263i)4-s + (−0.437 − 0.899i)5-s + (0.861 + 0.507i)6-s + (0.802 − 0.596i)7-s + (0.388 + 0.921i)8-s + (−0.237 − 0.971i)9-s + (−0.833 + 0.552i)10-s + (−0.339 + 0.940i)11-s + (0.388 − 0.921i)12-s + (0.802 + 0.596i)13-s + (−0.697 − 0.716i)14-s + (0.977 + 0.211i)15-s + (0.861 − 0.507i)16-s + (−0.339 − 0.940i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 709 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.813 - 0.581i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 709 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.813 - 0.581i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(709\)
Sign: $0.813 - 0.581i$
Motivic weight: \(0\)
Character: $\chi_{709} (27, \cdot )$
Sato-Tate group: $\mu(59)$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 709,\ (0:\ ),\ 0.813 - 0.581i)\)

Particular Values

\(L(\chi,\frac{1}{2})\) \(\approx\) \(0.8352274879 - 0.2676648679i\)
\(L(\frac12,\chi)\) \(\approx\) \(0.8352274879 - 0.2676648679i\)
\(L(\chi,1)\) \(\approx\) \(0.7211543728 - 0.2378199226i\)
\(L(1,\chi)\) \(\approx\) \(0.7211543728 - 0.2378199226i\)

Euler product

   \(L(\chi,s) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)
   \(L(s,\chi) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−22.82733419796402230159163218027, −22.1482159019307445582055959246, −21.528971409347000689350120762, −19.92927894631183927673374490286, −18.95092658324765853740308484836, −18.41477295349799771790145960252, −17.92044456825323871377016558130, −17.12360670831503246281186502093, −16.03138227594841216655497930592, −15.41336043121084356587837255028, −14.54566724628598439959560553688, −13.67212618119741130786650096618, −12.990962132528653745711908615403, −11.76633292805995380424540340466, −11.03332345854897427194169609036, −10.30882309798506000665815219438, −8.62816844459971234757982460139, −8.15658476057249592000643288929, −7.38004389157478898244134418408, −6.299161224448859051943737284936, −5.86604187137716034377409568913, −4.85832495321050705904055054173, −3.57186891234996415234761760735, −2.20160303018213305334956510911, −0.71131219045601758930532815689, 0.86865025632871905771970563856, 1.875599610155288686877593906295, 3.53199724492545532165142422793, 4.386120727380137730608267056219, 4.74350431406480836587910299706, 5.82262988208800482161511394827, 7.51587016273961009522968359021, 8.31268050358241864333064459428, 9.41129375161887465339706159035, 9.8998489131056294830423065157, 11.02937705503919239783267662092, 11.579847292507368777027180809303, 12.21572979065637388690162576819, 13.257635879349037216168744964752, 14.13956943916717666204647898348, 15.18453235851436965568104576897, 16.27743450733043214232940381546, 16.76218705214614351765542561574, 17.90978736898397523321612529539, 18.13309941302088272304160899301, 19.63956794342579582550626046146, 20.363037942440422129719341246833, 20.898977949487124308158045953040, 21.30458536249923696381514752786, 22.59876707073482480456794599185

Graph of the $Z$-function along the critical line