Properties

Degree $1$
Conductor $709$
Sign $0.529 - 0.848i$
Motivic weight $0$
Primitive yes
Self-dual no
Analytic rank $0$

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.977 + 0.211i)2-s + (0.484 − 0.874i)3-s + (0.910 + 0.413i)4-s + (0.861 − 0.507i)5-s + (0.658 − 0.752i)6-s + (0.0797 − 0.996i)7-s + (0.802 + 0.596i)8-s + (−0.530 − 0.847i)9-s + (0.949 − 0.314i)10-s + (−0.237 − 0.971i)11-s + (0.802 − 0.596i)12-s + (0.0797 + 0.996i)13-s + (0.288 − 0.957i)14-s + (−0.0266 − 0.999i)15-s + (0.658 + 0.752i)16-s + (−0.237 + 0.971i)17-s + ⋯
L(s,χ)  = 1  + (0.977 + 0.211i)2-s + (0.484 − 0.874i)3-s + (0.910 + 0.413i)4-s + (0.861 − 0.507i)5-s + (0.658 − 0.752i)6-s + (0.0797 − 0.996i)7-s + (0.802 + 0.596i)8-s + (−0.530 − 0.847i)9-s + (0.949 − 0.314i)10-s + (−0.237 − 0.971i)11-s + (0.802 − 0.596i)12-s + (0.0797 + 0.996i)13-s + (0.288 − 0.957i)14-s + (−0.0266 − 0.999i)15-s + (0.658 + 0.752i)16-s + (−0.237 + 0.971i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 709 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.529 - 0.848i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 709 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.529 - 0.848i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(709\)
Sign: $0.529 - 0.848i$
Motivic weight: \(0\)
Character: $\chi_{709} (149, \cdot )$
Sato-Tate group: $\mu(59)$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 709,\ (0:\ ),\ 0.529 - 0.848i)\)

Particular Values

\(L(\chi,\frac{1}{2})\) \(\approx\) \(3.188077369 - 1.768508781i\)
\(L(\frac12,\chi)\) \(\approx\) \(3.188077369 - 1.768508781i\)
\(L(\chi,1)\) \(\approx\) \(2.344300443 - 0.7206309531i\)
\(L(1,\chi)\) \(\approx\) \(2.344300443 - 0.7206309531i\)

Euler product

   \(L(\chi,s) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)
   \(L(s,\chi) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−22.45288774961466597490238729216, −21.9895534782022160593394631818, −21.27147892879676193297922006409, −20.3865119221505097831044570137, −20.06971146588493700904774408448, −18.669100290626510040677120262172, −17.99245787307493332580348186218, −16.81905795522268635405138114642, −15.612930765864698377563209016269, −15.3470555638570761290322503134, −14.53923381792510884789323266520, −13.74849560496251954610064655964, −13.00496604515587501707763292817, −11.93638986400932300742283942259, −11.07957777054415398876546908834, −10.027337218986427050025177815197, −9.72452107819451438814618596383, −8.44360726190857837883679944782, −7.24022658052172485833026680605, −6.17770830244899404900139335344, −5.155008431987186707769970708773, −4.82817036197383101587264516408, −3.261427889558464210844685141718, −2.6952921470950823078136074549, −1.9186375917568258719114146256, 1.33009473585352556777785786491, 1.979195487047399273636183217321, 3.32197948528538770079932665209, 4.06431691263311012645036274250, 5.42320611932302203839943801130, 6.12758007862125597567600016461, 6.97458346061200004796623544118, 7.86644751363119544583482161853, 8.710443499360628833364194183990, 9.88939898235660473036987867983, 11.05903582973757118008163263922, 11.87024578562473381852040516075, 12.987602235794916449245519637900, 13.36561998070252443129253882760, 14.10509811548887541841568914233, 14.54272656126597693653513589583, 15.992067624990877303620300495453, 16.738969277065445111277825429692, 17.37579125965597485696589749135, 18.417303537373176945112362079674, 19.51184898422029304788670615607, 20.14752421351326028854252779072, 20.98723996369833023925191052304, 21.524949564903066207792914583699, 22.54560646251254656606214156462

Graph of the $Z$-function along the critical line