Properties

Degree 1
Conductor $ 3 \cdot 23 $
Sign $0.0230 + 0.999i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.841 − 0.540i)2-s + (0.415 + 0.909i)4-s + (0.959 + 0.281i)5-s + (−0.654 + 0.755i)7-s + (0.142 − 0.989i)8-s + (−0.654 − 0.755i)10-s + (−0.841 + 0.540i)11-s + (−0.654 − 0.755i)13-s + (0.959 − 0.281i)14-s + (−0.654 + 0.755i)16-s + (−0.415 + 0.909i)17-s + (0.415 + 0.909i)19-s + (0.142 + 0.989i)20-s + 22-s + (0.841 + 0.540i)25-s + (0.142 + 0.989i)26-s + ⋯
L(s,χ)  = 1  + (−0.841 − 0.540i)2-s + (0.415 + 0.909i)4-s + (0.959 + 0.281i)5-s + (−0.654 + 0.755i)7-s + (0.142 − 0.989i)8-s + (−0.654 − 0.755i)10-s + (−0.841 + 0.540i)11-s + (−0.654 − 0.755i)13-s + (0.959 − 0.281i)14-s + (−0.654 + 0.755i)16-s + (−0.415 + 0.909i)17-s + (0.415 + 0.909i)19-s + (0.142 + 0.989i)20-s + 22-s + (0.841 + 0.540i)25-s + (0.142 + 0.989i)26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 69 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (0.0230 + 0.999i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 69 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (0.0230 + 0.999i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(69\)    =    \(3 \cdot 23\)
\( \varepsilon \)  =  $0.0230 + 0.999i$
motivic weight  =  \(0\)
character  :  $\chi_{69} (41, \cdot )$
Sato-Tate  :  $\mu(22)$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((1,\ 69,\ (1:\ ),\ 0.0230 + 0.999i)\)
\(L(\chi,\frac{1}{2})\)  \(\approx\)  \(0.5281609710 + 0.5404887979i\)
\(L(\frac12,\chi)\)  \(\approx\)  \(0.5281609710 + 0.5404887979i\)
\(L(\chi,1)\)  \(\approx\)  \(0.6860242818 + 0.09579848749i\)
\(L(1,\chi)\)  \(\approx\)  \(0.6860242818 + 0.09579848749i\)

Euler product

\[\begin{aligned}L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]
\[\begin{aligned}L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−31.65604592086946234506889641669, −29.578531117385949296912896922608, −29.16494903267967708344182007544, −28.1020280871733359573396962194, −26.38987275859216500912488450462, −26.27578240112032602173285903566, −24.75769246372188253831238497624, −24.00686263844853232262834455710, −22.60643960702298309384211347768, −21.10061060911260827890682989456, −19.98318994483721091480918114928, −18.81360500694868466098914698390, −17.647774641841628145667312856861, −16.70478321884449542268603135222, −15.79619419069244483594717043892, −14.12568858996884696051556848663, −13.247459941380982361888064144850, −11.20664101782339476838768415615, −9.91582469184116634122560162260, −9.16808337914729649436642873908, −7.50181903364466193965463509791, −6.35972046139459242203019833544, −4.98957174502183185135608928808, −2.41602522775930174864492171405, −0.47580111854292612979898858379, 1.94166751396486846214629632492, 3.119929083412549940294630492375, 5.54125920274232410552090092139, 7.03821610171147938511036762766, 8.570558574320425350737108753176, 9.84768287018203779607747834305, 10.52616938068108845469061047743, 12.326686269054747713845290642156, 13.08725374761155825107817505447, 14.95922189510995800674575129804, 16.25351191435190326148844569503, 17.59541026800249944146247769514, 18.29970004447684786822303145738, 19.45991164483348561712894587811, 20.70324466716484378479752161212, 21.73642657812398332899472551977, 22.60271916891602403414588395192, 24.65123279923999774030954314473, 25.57849546402114274753893380822, 26.27834022147104042838782681657, 27.657558527827079062604552239421, 28.81409268808544708563359436818, 29.28235487549766760668450538091, 30.54943802432003717922036087561, 31.65993748406984448975488168705

Graph of the $Z$-function along the critical line